Indexed categories for program development

B. Hilken; D. E. Rydeheard

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1991)

  • Volume: 32, Issue: 2, page 165-185
  • ISSN: 1245-530X

How to cite

top

Hilken, B., and Rydeheard, D. E.. "Indexed categories for program development." Cahiers de Topologie et Géométrie Différentielle Catégoriques 32.2 (1991): 165-185. <http://eudml.org/doc/91477>.

@article{Hilken1991,
author = {Hilken, B., Rydeheard, D. E.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {indexed categories; program specification; program correctness},
language = {eng},
number = {2},
pages = {165-185},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Indexed categories for program development},
url = {http://eudml.org/doc/91477},
volume = {32},
year = {1991},
}

TY - JOUR
AU - Hilken, B.
AU - Rydeheard, D. E.
TI - Indexed categories for program development
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1991
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 32
IS - 2
SP - 165
EP - 185
LA - eng
KW - indexed categories; program specification; program correctness
UR - http://eudml.org/doc/91477
ER -

References

top
  1. Abramsky, S. (1987) Domain Theory in Logical Form. Proc. Symposium on Logic in Computer Science, June 22-25, I.E.E.E., Ithaca, NY. Zbl0737.03006
  2. Constable, R.L. et al. (1985) Implementing Mathematics with the Nuprl Proof Development System. Prentice Hall, Englewood Cliffs, NJ. 
  3. Crole, R. & Pitts, A.M. (1990) New foundations for fixpoint computations. Proc. Symposium on Logic in Computer Science, June 4-7, 1990. I.E.E.E., Philadelphia, PA. Zbl0763.03031MR1099199
  4. Futatsugi, K., Goguen, J.A., Jouannaud, & Meseguer. (1985) Principles of OBJ2. In H.K. Reid (ed.) Proc. 12th ACM Symposium on Principles of Programming Languages, pp. 52-66. A.C.M. 
  5. Goguen, J.A. & Burstall, R.M. (1984) Introducing Institutions In E. Clarke and D. Kozen (eds) Logics of Programs, pp. 221-256, Springer LNCS 164. Zbl0543.68021MR778942
  6. Goldstine, H.H.& Von Neumann, J. (1947) "Planning and Coding of Problems for an Electronic Computing Instrument". Report of U.S. Ord. Dept. In A. Traub (ed.) Collected Works of J. von Neumann, New York, Pergamon, Vol. 5, pp 80-151. MR22443
  7. Gray, J.W., (1974) Formal Category Theory: Adjointness for 2-Categories. SpringerLNM391. Zbl0285.18006MR371990
  8. Harper, R., Honsell, F. & Plotkin, P. (1987) A Framework for Defining Logics. Proc. Symposium on Logic in Computer Science, June 22-25, I.E.E.E., Ithaca, NY. Zbl0778.03004
  9. Harper, R., Macqueen, D.B. AND Milner, R. (1986) Standard ML. Technical Report, ECS-LFCS-86-2, Edinburgh University, Department of Computer Science. 
  10. Hudak, P.& Wadler, P. et al. (1988) Report on the Functional Programming Language, Haskell. Draft proposed standard. Preprint, Dept. Computer Science, University of Glasgow, U.K. 
  11. Hyland, J.M.E. & Pitts, A.M. (1989) Theory of constructions: categorical semantics and topos-theoretic models. Proc. A.M.S. Conference on Categories in Computer Science and Logic, Boulder, Colorado (1987). A.M.S. Zbl0721.03048MR1003199
  12. Johnstone, P.T. & Pare, R. (1978) (eds.) Indexed Categories and their Applications, SpringerLMS661. Zbl0372.00009MR498768
  13. Jones, C.B. (1986) Systematic Software Development Using VDM. Prentice-Hall International Series in Computer Science (ed. C.A.R. Hoare), Hemmel Hempstead. Zbl0743.68048
  14. Kelly, G.M. (1982) Basic Concepts of Enriched Category Theory. London Math. Soc., Lecture Note Series, 64. C.U.P. Zbl0478.18005MR651714
  15. Lambek, J. & Scott, P.J. (1986) Introduction to higher order categorical logic. Cambridge studies in advanced mathematics 7. C.U.P. Zbl0596.03002MR856915
  16. Lawvere, F.W. (1969) Adjointness in Foundations. Dialectica23, 3/4. pp. 281-296. Zbl0341.18002
  17. Lawvere, F.W. (1970) Equality in Hyperdoctrines and the Comprehension Schema as an Adjoint Functor. Proc. Symp. in Pure Math., XVII: Applications of Categorical Algebra, A.M.S. pp 1-14. Zbl0234.18002MR257175
  18. Mac Lane, S. (1971) Categories for the Working Mathematician. Springer-Verlag, New York. Zbl0232.18001MR354798
  19. Manes, E.G. & Arbib, M.A. (1986) Algebraic Approaches to Program Semantics. Texts and Monographs in Computer Science, AKM Series, Springer-Verlag. Zbl0599.68008MR860560
  20. Martí-Oliet, N. & Meseguer, J. (1989) From Petri Nets to Linear Logic. Proc. Conference on Category Theory and Computer Science, Manchester, 1989, SpringerLNCS389. Zbl0746.03057MR1031570
  21. Moggi, E. (1989) Computational lambda-calculus and monads. Proc. 4th Symp. Logic in Computer Science, 1989, I.E.E.E. Zbl0716.03007
  22. Moggi, E. (1989a) A categorical account of program modules. Proc. Summer Conference on Category Theory and Computer Science, Manchester1989, SpringerLNCS389. Zbl0747.18009MR1031558
  23. Morris, F.L. & Jones, C.B. (1984) An Early Program Proof by Alan Turing. Annals of the History of Computing Vol. 6, Number 2, pp.139-143. Zbl0998.01521MR741062
  24. de Paiva, V.C.V. (1989) A Dialectica-like Model of Linear Logic. Proc. Summer Conference on Category Theory and Computer Science, Manchester1989, SpringerLNCS389. MR1031571
  25. Paulson, L.C. (1986) Natural deduction as higher-order resolution. J. Logic Programming, 3, pp. 237-258. Zbl0613.68035MR876213
  26. Pitts, A.M. (1987) Polymorphism is Set Theoretic, Constructively. Proc. Summer Conference on Category Theory and Computer Science, Edinburgh, 1987, SpringerLNCS283. Zbl0644.18003MR925222
  27. Rydeheard, D.E. & Burstall, R.M. (1988) Computational Category Theory. Prentice-Hall International Series in Computer Science (ed. C.A.R. Hoare), Hemmel Hempstead. Zbl0649.18001MR999925
  28. Rydeheard, D.E. & Stell, J.G. (1987) Foundations of Equational Deduction: A Categorical Treatment of Equational Proofs and Unification Algorithms. Proc. Summer Conference on Category Theory and Computer Science, Edinburgh, 1987, Springer LNCS 283. Zbl0664.03041MR925227
  29. Seely, R.A.G. (1983) Hyperdoctrines, Natural Deduction and the Beck Condition. Z. Math. Logik, 29, pp. 505-542. Zbl0565.03032MR723656
  30. Seely, R.A.G. (1984) Locally Cartesian Closed Categories and Type Theory. Math. Proc. Camb. Phil. Soc., 95, pp. 33-48. Zbl0539.03048MR727078
  31. Seely, R.A.G. (1987) Modelling Computations: A 2-Categorical Framework. Proc. Symp. Logic in Computer Science, June 22-25, 1987, I.E.E.E., Ithaca, NY. 
  32. Seely, R.A.G. (1987a) Categorical semantics for higher order polymorphic lambda calculus. J. Sym. Logic52, 4. Zbl0642.03007MR916402
  33. Seely, R.A.G. (1987b) Linear Logic, *-Autonomous Categories and Cofree Co-algebras. In J.W. Gray and A. Scedrov (eds.), Proc. A.M.S. Conference on Categories in Computer Science and Logic, Boulder, Colorado. Zbl0674.03007
  34. Street, R.H. (1974) Elementary Cosmoi. SpringerLNM420, pp. 104-133. Zbl0325.18005MR396723
  35. Street, R.H. (1976) Limits Indexed by Category-Valued 2-Functors. J. Pure and Applied Algebra, 8. pp. 149-181. Zbl0335.18005MR401868
  36. Turing, A.M. (1949) "Checking a Large Routine". In Report of a Conference on High Speed Automatic Calculating Machines, Univ. Math. Lab., Cambridge, pp. 67-69. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.