Indexed categories for program development
Cahiers de Topologie et Géométrie Différentielle Catégoriques (1991)
- Volume: 32, Issue: 2, page 165-185
- ISSN: 1245-530X
Access Full Article
topHow to cite
topHilken, B., and Rydeheard, D. E.. "Indexed categories for program development." Cahiers de Topologie et Géométrie Différentielle Catégoriques 32.2 (1991): 165-185. <http://eudml.org/doc/91477>.
@article{Hilken1991,
author = {Hilken, B., Rydeheard, D. E.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {indexed categories; program specification; program correctness},
language = {eng},
number = {2},
pages = {165-185},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Indexed categories for program development},
url = {http://eudml.org/doc/91477},
volume = {32},
year = {1991},
}
TY - JOUR
AU - Hilken, B.
AU - Rydeheard, D. E.
TI - Indexed categories for program development
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1991
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 32
IS - 2
SP - 165
EP - 185
LA - eng
KW - indexed categories; program specification; program correctness
UR - http://eudml.org/doc/91477
ER -
References
top- Abramsky, S. (1987) Domain Theory in Logical Form. Proc. Symposium on Logic in Computer Science, June 22-25, I.E.E.E., Ithaca, NY. Zbl0737.03006
- Constable, R.L. et al. (1985) Implementing Mathematics with the Nuprl Proof Development System. Prentice Hall, Englewood Cliffs, NJ.
- Crole, R. & Pitts, A.M. (1990) New foundations for fixpoint computations. Proc. Symposium on Logic in Computer Science, June 4-7, 1990. I.E.E.E., Philadelphia, PA. Zbl0763.03031MR1099199
- Futatsugi, K., Goguen, J.A., Jouannaud, & Meseguer. (1985) Principles of OBJ2. In H.K. Reid (ed.) Proc. 12th ACM Symposium on Principles of Programming Languages, pp. 52-66. A.C.M.
- Goguen, J.A. & Burstall, R.M. (1984) Introducing Institutions In E. Clarke and D. Kozen (eds) Logics of Programs, pp. 221-256, Springer LNCS 164. Zbl0543.68021MR778942
- Goldstine, H.H.& Von Neumann, J. (1947) "Planning and Coding of Problems for an Electronic Computing Instrument". Report of U.S. Ord. Dept. In A. Traub (ed.) Collected Works of J. von Neumann, New York, Pergamon, Vol. 5, pp 80-151. MR22443
- Gray, J.W., (1974) Formal Category Theory: Adjointness for 2-Categories. SpringerLNM391. Zbl0285.18006MR371990
- Harper, R., Honsell, F. & Plotkin, P. (1987) A Framework for Defining Logics. Proc. Symposium on Logic in Computer Science, June 22-25, I.E.E.E., Ithaca, NY. Zbl0778.03004
- Harper, R., Macqueen, D.B. AND Milner, R. (1986) Standard ML. Technical Report, ECS-LFCS-86-2, Edinburgh University, Department of Computer Science.
- Hudak, P.& Wadler, P. et al. (1988) Report on the Functional Programming Language, Haskell. Draft proposed standard. Preprint, Dept. Computer Science, University of Glasgow, U.K.
- Hyland, J.M.E. & Pitts, A.M. (1989) Theory of constructions: categorical semantics and topos-theoretic models. Proc. A.M.S. Conference on Categories in Computer Science and Logic, Boulder, Colorado (1987). A.M.S. Zbl0721.03048MR1003199
- Johnstone, P.T. & Pare, R. (1978) (eds.) Indexed Categories and their Applications, SpringerLMS661. Zbl0372.00009MR498768
- Jones, C.B. (1986) Systematic Software Development Using VDM. Prentice-Hall International Series in Computer Science (ed. C.A.R. Hoare), Hemmel Hempstead. Zbl0743.68048
- Kelly, G.M. (1982) Basic Concepts of Enriched Category Theory. London Math. Soc., Lecture Note Series, 64. C.U.P. Zbl0478.18005MR651714
- Lambek, J. & Scott, P.J. (1986) Introduction to higher order categorical logic. Cambridge studies in advanced mathematics 7. C.U.P. Zbl0596.03002MR856915
- Lawvere, F.W. (1969) Adjointness in Foundations. Dialectica23, 3/4. pp. 281-296. Zbl0341.18002
- Lawvere, F.W. (1970) Equality in Hyperdoctrines and the Comprehension Schema as an Adjoint Functor. Proc. Symp. in Pure Math., XVII: Applications of Categorical Algebra, A.M.S. pp 1-14. Zbl0234.18002MR257175
- Mac Lane, S. (1971) Categories for the Working Mathematician. Springer-Verlag, New York. Zbl0232.18001MR354798
- Manes, E.G. & Arbib, M.A. (1986) Algebraic Approaches to Program Semantics. Texts and Monographs in Computer Science, AKM Series, Springer-Verlag. Zbl0599.68008MR860560
- Martí-Oliet, N. & Meseguer, J. (1989) From Petri Nets to Linear Logic. Proc. Conference on Category Theory and Computer Science, Manchester, 1989, SpringerLNCS389. Zbl0746.03057MR1031570
- Moggi, E. (1989) Computational lambda-calculus and monads. Proc. 4th Symp. Logic in Computer Science, 1989, I.E.E.E. Zbl0716.03007
- Moggi, E. (1989a) A categorical account of program modules. Proc. Summer Conference on Category Theory and Computer Science, Manchester1989, SpringerLNCS389. Zbl0747.18009MR1031558
- Morris, F.L. & Jones, C.B. (1984) An Early Program Proof by Alan Turing. Annals of the History of Computing Vol. 6, Number 2, pp.139-143. Zbl0998.01521MR741062
- de Paiva, V.C.V. (1989) A Dialectica-like Model of Linear Logic. Proc. Summer Conference on Category Theory and Computer Science, Manchester1989, SpringerLNCS389. MR1031571
- Paulson, L.C. (1986) Natural deduction as higher-order resolution. J. Logic Programming, 3, pp. 237-258. Zbl0613.68035MR876213
- Pitts, A.M. (1987) Polymorphism is Set Theoretic, Constructively. Proc. Summer Conference on Category Theory and Computer Science, Edinburgh, 1987, SpringerLNCS283. Zbl0644.18003MR925222
- Rydeheard, D.E. & Burstall, R.M. (1988) Computational Category Theory. Prentice-Hall International Series in Computer Science (ed. C.A.R. Hoare), Hemmel Hempstead. Zbl0649.18001MR999925
- Rydeheard, D.E. & Stell, J.G. (1987) Foundations of Equational Deduction: A Categorical Treatment of Equational Proofs and Unification Algorithms. Proc. Summer Conference on Category Theory and Computer Science, Edinburgh, 1987, Springer LNCS 283. Zbl0664.03041MR925227
- Seely, R.A.G. (1983) Hyperdoctrines, Natural Deduction and the Beck Condition. Z. Math. Logik, 29, pp. 505-542. Zbl0565.03032MR723656
- Seely, R.A.G. (1984) Locally Cartesian Closed Categories and Type Theory. Math. Proc. Camb. Phil. Soc., 95, pp. 33-48. Zbl0539.03048MR727078
- Seely, R.A.G. (1987) Modelling Computations: A 2-Categorical Framework. Proc. Symp. Logic in Computer Science, June 22-25, 1987, I.E.E.E., Ithaca, NY.
- Seely, R.A.G. (1987a) Categorical semantics for higher order polymorphic lambda calculus. J. Sym. Logic52, 4. Zbl0642.03007MR916402
- Seely, R.A.G. (1987b) Linear Logic, *-Autonomous Categories and Cofree Co-algebras. In J.W. Gray and A. Scedrov (eds.), Proc. A.M.S. Conference on Categories in Computer Science and Logic, Boulder, Colorado. Zbl0674.03007
- Street, R.H. (1974) Elementary Cosmoi. SpringerLNM420, pp. 104-133. Zbl0325.18005MR396723
- Street, R.H. (1976) Limits Indexed by Category-Valued 2-Functors. J. Pure and Applied Algebra, 8. pp. 149-181. Zbl0335.18005MR401868
- Turing, A.M. (1949) "Checking a Large Routine". In Report of a Conference on High Speed Automatic Calculating Machines, Univ. Math. Lab., Cambridge, pp. 67-69.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.