Page 1 Next

Displaying 1 – 20 of 61

Showing per page

A non-uniform finitary relational semantics of system T

Lionel Vaux (2013)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We study iteration and recursion operators in the denotational semantics of typed λ-calculi derived from the multiset relational model of linear logic. Although these operators are defined as fixpoints of typed functionals, we prove them finitary in the sense of Ehrhard’s finiteness spaces.

A Note on Negative Tagging for Least Fixed-Point Formulae

Dilian Gurov, Bruce Kapron (2010)

RAIRO - Theoretical Informatics and Applications

Proof systems with sequents of the form U ⊢ Φ for proving validity of a propositional modal μ-calculus formula Φ over a set U of states in a given model usually handle fixed-point formulae through unfolding, thus allowing such formulae to reappear in a proof. Tagging is a technique originated by Winskel for annotating fixed-point formulae with information about the proof states at which these are unfolded. This information is used later in the proof to avoid unnecessary unfolding, without...

A system for deduction-based formal verification of workflow-oriented software models

Radosław Klimek (2014)

International Journal of Applied Mathematics and Computer Science

The work concerns formal verification of workflow-oriented software models using the deductive approach. The formal correctness of a model's behaviour is considered. Manually building logical specifications, which are regarded as a set of temporal logic formulas, seems to be a significant obstacle for an inexperienced user when applying the deductive approach. A system, along with its architecture, for deduction-based verification of workflow-oriented models is proposed. The process inference is...

Algebraic Approach to Algorithmic Logic

Grzegorz Bancerek (2014)

Formalized Mathematics

We introduce algorithmic logic - an algebraic approach according to [25]. It is done in three stages: propositional calculus, quantifier calculus with equality, and finally proper algorithmic logic. For each stage appropriate signature and theory are defined. Propositional calculus and quantifier calculus with equality are explored according to [24]. A language is introduced with language signature including free variables, substitution, and equality. Algorithmic logic requires a bialgebra structure...

An ILP model for a monotone graded classification problem

Peter Vojtáš, Tomáš Horváth, Stanislav Krajči, Rastislav Lencses (2004)

Kybernetika

Motivation for this paper are classification problems in which data can not be clearly divided into positive and negative examples, especially data in which there is a monotone hierarchy (degree, preference) of more or less positive (negative) examples. We present a new formulation of a fuzzy inductive logic programming task in the framework of fuzzy logic in narrow sense. Our construction is based on a syntactical equivalence of fuzzy logic programs FLP and a restricted class of generalised annotated...

Choice functions and well-orderings over the infinite binary tree

Arnaud Carayol, Christof Löding, Damian Niwinski, Igor Walukiewicz (2010)

Open Mathematics

We give a new proof showing that it is not possible to define in monadic second-order logic (MSO) a choice function on the infinite binary tree. This result was first obtained by Gurevich and Shelah using set theoretical arguments. Our proof is much simpler and only uses basic tools from automata theory. We show how the result can be used to prove the inherent ambiguity of languages of infinite trees. In a second part we strengthen the result of the non-existence of an MSO-definable well-founded...

Comparing the succinctness of monadic query languages over finite trees

Martin Grohe, Nicole Schweikardt (2004)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We study the succinctness of monadic second-order logic and a variety of monadic fixed point logics on trees. All these languages are known to have the same expressive power on trees, but some can express the same queries much more succinctly than others. For example, we show that, under some complexity theoretic assumption, monadic second-order logic is non-elementarily more succinct than monadic least fixed point logic, which in turn is non-elementarily more succinct than monadic datalog. Succinctness...

Comparing the succinctness of monadic query languages over finite trees

Martin Grohe, Nicole Schweikardt (2010)

RAIRO - Theoretical Informatics and Applications

We study the succinctness of monadic second-order logic and a variety of monadic fixed point logics on trees. All these languages are known to have the same expressive power on trees, but some can express the same queries much more succinctly than others. For example, we show that, under some complexity theoretic assumption, monadic second-order logic is non-elementarily more succinct than monadic least fixed point logic, which in turn is non-elementarily more succinct than monadic datalog.
Succinctness...

Construction of tree automata from regular expressions

Dietrich Kuske, Ingmar Meinecke (2011)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Since recognizable tree languages are closed under the rational operations, every regular tree expression denotes a recognizable tree language. We provide an alternative proof to this fact that results in smaller tree automata. To this aim, we transfer Antimirov's partial derivatives from regular word expressions to regular tree expressions. For an analysis of the size of the resulting automaton as well as for algorithmic improvements, we also transfer the methods of Champarnaud and Ziadi from words...

Construction of tree automata from regular expressions

Dietrich Kuske, Ingmar Meinecke (2011)

RAIRO - Theoretical Informatics and Applications

Since recognizable tree languages are closed under the rational operations, every regular tree expression denotes a recognizable tree language. We provide an alternative proof to this fact that results in smaller tree automata. To this aim, we transfer Antimirov's partial derivatives from regular word expressions to regular tree expressions. For an analysis of the size of the resulting automaton as well as for algorithmic improvements, we also transfer the methods of Champarnaud and Ziadi...

Currently displaying 1 – 20 of 61

Page 1 Next