Parity complexes

Ross Street

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1991)

  • Volume: 32, Issue: 4, page 315-343
  • ISSN: 1245-530X

How to cite

top

Street, Ross. "Parity complexes." Cahiers de Topologie et Géométrie Différentielle Catégoriques 32.4 (1991): 315-343. <http://eudml.org/doc/91485>.

@article{Street1991,
author = {Street, Ross},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {-category; combinatorial structure; parity complexes; diagrams; positive and negative faces; chain complex of free abelian groups; movement; descent theory; cohomology; homotopy types},
language = {eng},
number = {4},
pages = {315-343},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Parity complexes},
url = {http://eudml.org/doc/91485},
volume = {32},
year = {1991},
}

TY - JOUR
AU - Street, Ross
TI - Parity complexes
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1991
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 32
IS - 4
SP - 315
EP - 343
LA - eng
KW - -category; combinatorial structure; parity complexes; diagrams; positive and negative faces; chain complex of free abelian groups; movement; descent theory; cohomology; homotopy types
UR - http://eudml.org/doc/91485
ER -

References

top
  1. [A1] Iain Aitchison, The geometry of oriented cubes, Macquarie Mathematics Reports 86-002 (December 1986). 
  2. [A2] Iain Aitchison, String diagrams for non-abelian cocycle conditions (Handwritten Notes, Talk presented at Louvain-la-Neuve Belgium 1987). 
  3. Iain Aitchison and Ross Street, [AS] The algebra of oriented cubes (Handwritten Notes). 
  4. [ASn] F.A. Al-Agl and R. Steiner, Nerves of multiple categories, University of Glasgow, Department of Mathematics Preprint Series 91/10 (14 February 1991). MR1189094
  5. [BH] R. Brown and P.J. Higgins, The equivalence of crossed complexes and ∞groupoids, Cahiers de topologie et géométrie différentielle22 (1981) 371-386. Zbl0487.55007
  6. [J] Michael Johnson, Pasting Diagrams in n-Categories with Applications to Coherence Theorems and Categories of Paths, (PhD Thesis, University of Sydney, October 1987). 
  7. [JW] Michael Johnson and Robert Walters, On the nerve of an n-category, Cahiers de topologie et géométrie différentielle catégorique28 (1987) 257-282. Zbl0662.18006MR926546
  8. [KV1] M.M. Kapranov and V.A. Voevodsky, Combinatorial-geometric aspects of polycategory theory: pasting schemes and higher Bruhat orders (List of results), Preprint (1990). MR1130400
  9. [KV2] M. M. Kapranov and V. A. Voevodsky, ∞-Groupoids and homotopy types, Preprint (1990). 
  10. [MS] Yu. I Manin and V.V. Schechtman, Arrangements of hyperplanes, higher braid groups and higher Bruhat orders, Advanced Studies in Pure Mathematics17 (1989) 289-308. Zbl0759.20002MR1097620
  11. [M] Ross Moore, Apple Macintosh software implementing the excision of extremals algorithm for simplexes and the like, (Macquarie University, 1989). 
  12. [Pw] A.J. Power, An n-categorical pasting theorem, Lecture Notes in Math.1488 (Springer, 1991) 326-358. Zbl0736.18004MR1173022
  13. [P] Vaughan Pratt, Modeling concurrency with geometry, Preprint (Stanford University, August 1990). Zbl0622.68034
  14. [R1] J.E. Roberts, Mathematical aspects of local cohomology, Proc. Colloquium on Operator Algebras and their Application to Mathematical Physics (Marseille1977). Zbl0455.55005
  15. [R2] J.E. Roberts, Complicial sets (Handwritten Notes 1978). 
  16. [Sn] Richard Steiner, Pasting in multiple categories, Preprint (August 1991). MR1489462
  17. [S0] Ross Street, Higher-dimensional nerves (Handwritten Notes, April-May 1982). 
  18. [S1] Ross Street, The algebra of oriented simplexes, j. Pure Appl. Algebra49 (1987) 283-335. Zbl0661.18005MR920944
  19. [S2] Ross Street, Parity complexes, Macquarie Mathematics Reports 88-0015 (January 1988). 
  20. [S3] Ross Street, Fillers for nerves, Lecture Notes in Math.1348 (Springer-Verlag, 1988) 337-341. Zbl0656.18012MR975981

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.