On braiding, syllapses and symmetries

Sjoed Crans

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2000)

  • Volume: 41, Issue: 1, page 2-74
  • ISSN: 1245-530X

How to cite

top

Crans, Sjoed. "On braiding, syllapses and symmetries." Cahiers de Topologie et Géométrie Différentielle Catégoriques 41.1 (2000): 2-74. <http://eudml.org/doc/91626>.

@article{Crans2000,
author = {Crans, Sjoed},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {braiding; Yang-Baxter; Zamolodchikov equation; taisi; Gray-categories; braided Gray-monoids; sylleptic},
language = {eng},
number = {1},
pages = {2-74},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {On braiding, syllapses and symmetries},
url = {http://eudml.org/doc/91626},
volume = {41},
year = {2000},
}

TY - JOUR
AU - Crans, Sjoed
TI - On braiding, syllapses and symmetries
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2000
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 41
IS - 1
SP - 2
EP - 74
LA - eng
KW - braiding; Yang-Baxter; Zamolodchikov equation; taisi; Gray-categories; braided Gray-monoids; sylleptic
UR - http://eudml.org/doc/91626
ER -

References

top
  1. [1] J. Adams, "Infinite loop spaces", Princeton U. Press, Princeton, 1978. Zbl0398.55008MR505692
  2. [2] J.C. Baez and J. Dolan, Higher dimensional algebra and Topological Quantum Field Theory, Jour. Math. Phys.36 (1995), 6073-6105. Zbl0863.18004MR1355899
  3. [3] J.C. Baez and J. Dolan, Higher dimensional algebra III: n-categories and the algebra of opetopes, Adv. Math.135 (1998), 145-206. Zbl0909.18006MR1620826
  4. [4] J.C. Baez and L. Langford, 2-tangles, Lett. Math. Phys.43 (1998), 187-197. Zbl0905.57017MR1607351
  5. [5] J.C. Baez and M. Neuchl, Higher dimensional algebra I. Braided monoidal 2-categories, Adv. Math.121 (1996), 196-244. Zbl0855.18008MR1402727
  6. [6] M.A. Batanin, Monoidal globular categories as natural environment for the theory of weak n-categories, Adv. Math.136 (1998), 39-103. Zbl0912.18006MR1623672
  7. [7] L. Breen, On the classification of 2-gerbes and 2-stacks, Astérisque225 (1994). Zbl0818.18005MR1301844
  8. [8] R. Brown and N.D. Gilbert, Algebraic models of 3-types and automorphism structures for crossed modules, Proc. London Math. Soc.59 (1989), 51-73. Zbl0645.18007MR997251
  9. [9] S.E. Crans, "On combinatorial models for higher dimensional homotopies", Ph.D. thesis, Utrecht University, 1995. 
  10. [10] S.E. Crans, Generalized centers of braided and sylleptic monoidal 2-categories, Adv. Math.136 (1998), 183-223. Zbl0908.18004MR1626844
  11. [11] S.E. Crans, A tensor product for Gray-categories, Preprint 97/222, Macquarie University. Zbl0914.18006MR1667313
  12. [12] S.E. Crans, Higher dimensional Zamolodchikov and Yang-Baxter equations, in preparation. Zbl0991.18006
  13. [13] B. Day and R. Street, Monoidal bicategories and Hopf algebroids, Adv. Math.129 (1997), 99-157. Zbl0910.18004MR1458415
  14. [14] P.J. Freyd and D.N. Yetter, Braided Compact Closed Categories with Applications to Low Dimensional Topology, Adv. Math.77 (1989), 156-182. Zbl0679.57003MR1020583
  15. [15] R. Gordon, A.J. Power, and R. Street, Coherence for tricategories, Mem. Amer. Math. Soc.117 (1995), no. 558. Zbl0836.18001MR1261589
  16. [16] J.W. Gray, "Formal category theory: adjointness in 2-categories", vol. 391 of Lecture Notes in Math., Springer Verlag, New York, 1974. Zbl0285.18006MR371990
  17. [17] C. Hermida, M. Makkai, and J. Power, On weak higher dimensional categories, J. Pure Appl. Algebra (to appear). Zbl0985.18006
  18. [18] M. Johnson, The combinatorics of n-categorical pasting, J. Pure Appl. Algebra62 (1989), 211-225. Zbl0694.18007MR1026875
  19. [19] A. Joyal, letter to A. Grothendieck, 1984. 
  20. [20] A. Joyal and R. Street, The Geometry of Tensor Calculus, I, Adv. Math.88 (1991), 55-112. Zbl0738.18005MR1113284
  21. [21] A. Joyal and R. Street, Tortile Yang-Baxter operators in tensor categories, J. Pure Appl. Algebra71 (1991), 43-51. Zbl0726.18004MR1107651
  22. [22] A. Joyal and R. Street, Braided tensor categories, Adv. Math.102 (1993), 20-78. Zbl0817.18007MR1250465
  23. [23] M.M. Kapranov and V.A. Voevodsky, Braided monoidal 2-categories, 2-vector spaces and Zamolodchikov's tetrahedra equations, draft. Zbl0791.18010
  24. [24] M.M. Kapranov and V.A. Voevodsky, 2-categories and Zamolodchikov tetrahedra equations, in "Algebraic groups and their generalizations: quantum and infinite-dimensional methods", vol. 56 of Proc. Sympos. Pure Math., pp. 177-259, Amer. Math. Soc., Providence, RI, 1994. Zbl0809.18006MR1278735
  25. [25] M.M. Kapranov and V.A. Voevodsky, Braided monoidal 2-categories and Manin-Schechtman higher braid groups, J. Pure Appl. Algebra92 (1994), 241-267. Zbl0791.18010MR1266348
  26. [26] C. Kassel, "Quantum groups", vol. 155 of Graduate Texts in Math., Springer Verlag, New York, 1995. Zbl0808.17003MR1321145
  27. [27] G.M. Kelly, "Basic concepts of enriched category theory", vol. 64 of London Math. Soc. Lecture Note Ser., Cambridge U. Press, 1982. Zbl0478.18005MR651714
  28. [28] G.M. Kelly and R. Street, Review of the elements of 2-categories, in "Proceedings of the Sydney Category Seminar 1973", vol. 420 of Lecture Notes in Math., pp. 75-103, Springer Verlag, New York, 1974. Zbl0334.18016MR357542
  29. [29] S. Mac Lane and R. Paré, Coherence for bicategories and indexed categories, J. Pure Appl. Algebra37 (1985), 59-80. Zbl0567.18003MR794793
  30. [30] J.P. May, "The geometry of iterated loop-spaces", vol. 271 of Lecture Notes in Math., Springer Verlag, New York, 1972. Zbl0244.55009MR420610
  31. [31] R. Street, Parity complexes, Cahiers Topologie Géom. Différentielle Catég.32 (1991), 315-343. Zbl0760.18011MR1165827
  32. [32] T. Trimble, The definition of tetracategory, handwritten diagrams. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.