General associativity and general composition for double categories

Robert Dawson; Robert Pare

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1993)

  • Volume: 34, Issue: 1, page 57-79
  • ISSN: 1245-530X

How to cite

top

Dawson, Robert, and Pare, Robert. "General associativity and general composition for double categories." Cahiers de Topologie et Géométrie Différentielle Catégoriques 34.1 (1993): 57-79. <http://eudml.org/doc/91515>.

@article{Dawson1993,
author = {Dawson, Robert, Pare, Robert},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {horizontal composition; vertical composition; square; pinwheel; double category; iterated mixed composition},
language = {eng},
number = {1},
pages = {57-79},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {General associativity and general composition for double categories},
url = {http://eudml.org/doc/91515},
volume = {34},
year = {1993},
}

TY - JOUR
AU - Dawson, Robert
AU - Pare, Robert
TI - General associativity and general composition for double categories
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1993
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 34
IS - 1
SP - 57
EP - 79
LA - eng
KW - horizontal composition; vertical composition; square; pinwheel; double category; iterated mixed composition
UR - http://eudml.org/doc/91515
ER -

References

top
  1. 1 A. Bastiani and C. Ehresmann, Multiple Functors I. Limits Relative to Double Categories, Cahiers de Top. et Géom. Diff.XV-3 (1974), pp. 215-291. Zbl0332.18005MR379626
  2. 2 R. Brown and C.B. Spencer, Double groupoids and crossed modules, Cahiers Top. et Géom. Diff.XVII-4 (1976), pp. 343-362. Zbl0344.18004MR440553
  3. 3 R. Dawson and R. Paré, Characterizing Tileorders, to appear. Zbl0790.05020MR1253709
  4. 4 R. Dawson and R. Paré, Canonical Factorizations in Double Categories, in preparation. Zbl0778.18005
  5. 5 C. Ehresmann, Catégories Structurées, Ann. Sci. Ecole Norm. Sup.80 (1963), pp. 349-425. Zbl0128.02002MR197529
  6. 6 C. Ehresmann, Catégories et Structures, Dunod, Paris, 1965. Zbl0192.09803MR213410
  7. 7 A. and C. Ehresmann, Multiple Functors IV. Monoidal Closed Structures on Catn, Cahiers de Top. et Géom. Diff.XX-1, pp. 59-104. Zbl0415.18007
  8. 8 J.W. Gray, Formal Category Theory: Adjointness for 2-Categories, Lecture Notes in Math, 391, Springer1974. Zbl0285.18006MR371990
  9. 9 M. Johnson, Pasting Diagrams in n-Categories with Applications to Coherence Theorems and Categories of Paths, Ph.D. thesis, University of Sydney, 1987. 
  10. 10 G.M. Kelly and R. Street, Review of the Elements of 2-Categories, in Category Seminar, Lecture Notes in Math.420, pp, 75-103. Zbl0334.18016MR357542
  11. 11 R. Paré, Double Limits, in preparation. Zbl0939.18007
  12. 12 A.J. Power, A 2-Categorial Pasting Theorem, J. of Algebra, 1990, 129 (2) pp. 439-445. Zbl0698.18005MR1040947
  13. 13 P.H. Palmquist, The Double Category of Adjoint Squares, Lecture Notes in Math.195, pp. 123-153. Zbl0263.18004MR289600
  14. 14 C.B. Spencer, An abstract setting for homotopy pushouts and pullbacks, Cahiers de Top. et Géom. Diff.XVIII (1977), pp. 409-429. Zbl0378.18008MR486054
  15. 15 C.B. Spencer and Y.L. Wong, Pullback and pushout squares in a special double category with connection, Cahiers de Top. et Géom. Diff.XXIV (1983), pp. 161-192. Zbl0519.18008MR710039

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.