Free extensions of double categories
R. J. M. Dawson; R. Pare; D. A. Pronk
Cahiers de Topologie et Géométrie Différentielle Catégoriques (2004)
- Volume: 45, Issue: 1, page 35-80
- ISSN: 1245-530X
Access Full Article
topHow to cite
topDawson, R. J. M., Pare, R., and Pronk, D. A.. "Free extensions of double categories." Cahiers de Topologie et Géométrie Différentielle Catégoriques 45.1 (2004): 35-80. <http://eudml.org/doc/91677>.
@article{Dawson2004,
author = {Dawson, R. J. M., Pare, R., Pronk, D. A.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {double category; decidability; abacus},
language = {eng},
number = {1},
pages = {35-80},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Free extensions of double categories},
url = {http://eudml.org/doc/91677},
volume = {45},
year = {2004},
}
TY - JOUR
AU - Dawson, R. J. M.
AU - Pare, R.
AU - Pronk, D. A.
TI - Free extensions of double categories
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2004
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 45
IS - 1
SP - 35
EP - 80
LA - eng
KW - double category; decidability; abacus
UR - http://eudml.org/doc/91677
ER -
References
top- [1] J. Bénabou, Introduction to bicategories, in Reports of the Midwest Category Seminar, LNM40, Springer Verlag, New York, 1967, pp. 1-77. MR220789
- [2] W.W. Boone, Certain simple, unsolvable problems of group theory, I, Nederl. Akad. Wetensch. Proc. Ser. A.57 (1954), pp. 231-237 = Indag. Math.16 (1954), pp. 231-237. Zbl0055.00602MR66372
- [3] R. Brown, G.H. Mosa, Double categories, 2-categories, thin structures and connections, Theory Appl. Categ.5 (1999), pp. 163-175. Zbl0918.18005MR1694653
- [4] R.J. MacG. Dawson, R. Paré, General associativity and general composition for double categories, Cah. Top. Géom. Diff., 36 (1993), pp. 57-79. Zbl0778.18005MR1213297
- [5] R. Brown, C.B. Spencer, Double groupoids and crossed modules, Cahiers de Top. et Géom. Diff.17 (1976), pp. 343-362. Zbl0344.18004MR440553
- [6] R.J. MacG. Dawson, R. Paré, What is a double category like?, J. Pure Appl. Alg.168 (2002), pp. 19-34. Zbl1008.18007MR1879928
- [7] R.J. MacG. Dawson, R. Paré, D.A. Pronk, Undecidability and free adjoints, in Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics2001, Volume XIV, N. Callaos, F. G. Tinetti, J. M. Champarnaud, J. K. Lee (Eds), International Institute of Informatics and Systemics, Orlando, 2001, pp. 156-161
- [8] R.J. MacG. Dawson, R. Paré, D.A. Pronk, Adjoining adjoints, to appear in Adv. in Math. Zbl1030.18001
- [9] R.J. MacG. Dawson, R. Paré, D.A. Pronk, Undecidability of the free adjoint construction, preprint. Zbl1030.18002MR2006793
- [10] A. and C. Ehresmann, Multiple functors IV. Monoidal closed structures on Catn, Cahiers de Top. et Géom. Diff.20 (1979), pp. 59-105. Zbl0415.18007
- [11] C. Ehresmann, Catégories structurées, Ann. Sci. Ecole Norm. Sup.80 (1963), pp. 349-425. Zbl0128.02002MR197529
- [12] C. Ehresmann, Catégories et Structures, Dunod, Paris, 1965. Zbl0192.09803MR213410
- [13] P. Gabriel and M. Zisman, Calculus of Fractions and Homotopy Theory, Springer Verlag, New York, 1967. Zbl0186.56802MR210125
- [14] J. Lambek, How to program an infinite abacus, Canad. Math. Bull.4 (1961), pp. 295-302. Zbl0112.00902MR132695
- [15] M.L. Minsky, Recursive unsolvability of Post's problem of 'tag' and other topics in the theory of Turing machines, Annals of Math.74 (1961), pp. 437-455. Zbl0105.00802MR140405
- [16] D.A. Pronk, Etendues and stacks as bicategories of fractions, Comp. Math.102 (1996), pp. 243-303. Zbl0871.18003MR1401424
- [17] D. Quillen, Homotopical Algebra, LNM43, Springer Verlag, New York, 1967. Zbl0168.20903MR223432
- [18] S. Schanuel, R. Street, The free adjunction, Cahiers de Top. et Géom. Diff.27 (1986), pp. 81-83. Zbl0592.18002MR845410
- [19] C.B. Spencer, An abstract setting for homotopy pushouts and pullbacks, Cahiers de Top. et Géom. Diff.18 (1977), pp. 409-430. Zbl0378.18008MR486054
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.