Free extensions of double categories

R. J. M. Dawson; R. Pare; D. A. Pronk

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2004)

  • Volume: 45, Issue: 1, page 35-80
  • ISSN: 1245-530X

How to cite

top

Dawson, R. J. M., Pare, R., and Pronk, D. A.. "Free extensions of double categories." Cahiers de Topologie et Géométrie Différentielle Catégoriques 45.1 (2004): 35-80. <http://eudml.org/doc/91677>.

@article{Dawson2004,
author = {Dawson, R. J. M., Pare, R., Pronk, D. A.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {double category; decidability; abacus},
language = {eng},
number = {1},
pages = {35-80},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Free extensions of double categories},
url = {http://eudml.org/doc/91677},
volume = {45},
year = {2004},
}

TY - JOUR
AU - Dawson, R. J. M.
AU - Pare, R.
AU - Pronk, D. A.
TI - Free extensions of double categories
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2004
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 45
IS - 1
SP - 35
EP - 80
LA - eng
KW - double category; decidability; abacus
UR - http://eudml.org/doc/91677
ER -

References

top
  1. [1] J. Bénabou, Introduction to bicategories, in Reports of the Midwest Category Seminar, LNM40, Springer Verlag, New York, 1967, pp. 1-77. MR220789
  2. [2] W.W. Boone, Certain simple, unsolvable problems of group theory, I, Nederl. Akad. Wetensch. Proc. Ser. A.57 (1954), pp. 231-237 = Indag. Math.16 (1954), pp. 231-237. Zbl0055.00602MR66372
  3. [3] R. Brown, G.H. Mosa, Double categories, 2-categories, thin structures and connections, Theory Appl. Categ.5 (1999), pp. 163-175. Zbl0918.18005MR1694653
  4. [4] R.J. MacG. Dawson, R. Paré, General associativity and general composition for double categories, Cah. Top. Géom. Diff., 36 (1993), pp. 57-79. Zbl0778.18005MR1213297
  5. [5] R. Brown, C.B. Spencer, Double groupoids and crossed modules, Cahiers de Top. et Géom. Diff.17 (1976), pp. 343-362. Zbl0344.18004MR440553
  6. [6] R.J. MacG. Dawson, R. Paré, What is a double category like?, J. Pure Appl. Alg.168 (2002), pp. 19-34. Zbl1008.18007MR1879928
  7. [7] R.J. MacG. Dawson, R. Paré, D.A. Pronk, Undecidability and free adjoints, in Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics2001, Volume XIV, N. Callaos, F. G. Tinetti, J. M. Champarnaud, J. K. Lee (Eds), International Institute of Informatics and Systemics, Orlando, 2001, pp. 156-161 
  8. [8] R.J. MacG. Dawson, R. Paré, D.A. Pronk, Adjoining adjoints, to appear in Adv. in Math. Zbl1030.18001
  9. [9] R.J. MacG. Dawson, R. Paré, D.A. Pronk, Undecidability of the free adjoint construction, preprint. Zbl1030.18002MR2006793
  10. [10] A. and C. Ehresmann, Multiple functors IV. Monoidal closed structures on Catn, Cahiers de Top. et Géom. Diff.20 (1979), pp. 59-105. Zbl0415.18007
  11. [11] C. Ehresmann, Catégories structurées, Ann. Sci. Ecole Norm. Sup.80 (1963), pp. 349-425. Zbl0128.02002MR197529
  12. [12] C. Ehresmann, Catégories et Structures, Dunod, Paris, 1965. Zbl0192.09803MR213410
  13. [13] P. Gabriel and M. Zisman, Calculus of Fractions and Homotopy Theory, Springer Verlag, New York, 1967. Zbl0186.56802MR210125
  14. [14] J. Lambek, How to program an infinite abacus, Canad. Math. Bull.4 (1961), pp. 295-302. Zbl0112.00902MR132695
  15. [15] M.L. Minsky, Recursive unsolvability of Post's problem of 'tag' and other topics in the theory of Turing machines, Annals of Math.74 (1961), pp. 437-455. Zbl0105.00802MR140405
  16. [16] D.A. Pronk, Etendues and stacks as bicategories of fractions, Comp. Math.102 (1996), pp. 243-303. Zbl0871.18003MR1401424
  17. [17] D. Quillen, Homotopical Algebra, LNM43, Springer Verlag, New York, 1967. Zbl0168.20903MR223432
  18. [18] S. Schanuel, R. Street, The free adjunction, Cahiers de Top. et Géom. Diff.27 (1986), pp. 81-83. Zbl0592.18002MR845410
  19. [19] C.B. Spencer, An abstract setting for homotopy pushouts and pullbacks, Cahiers de Top. et Géom. Diff.18 (1977), pp. 409-430. Zbl0378.18008MR486054

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.