On the failure of Birkhoff's theorem for locally small based equational categories of algebras

Horst Herrlich

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1993)

  • Volume: 34, Issue: 3, page 185-192
  • ISSN: 1245-530X

How to cite

top

Herrlich, Horst. "On the failure of Birkhoff's theorem for locally small based equational categories of algebras." Cahiers de Topologie et Géométrie Différentielle Catégoriques 34.3 (1993): 185-192. <http://eudml.org/doc/91523>.

@article{Herrlich1993,
author = {Herrlich, Horst},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {small-based algebraic theory; Birkhoff Variety Theorem},
language = {eng},
number = {3},
pages = {185-192},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {On the failure of Birkhoff's theorem for locally small based equational categories of algebras},
url = {http://eudml.org/doc/91523},
volume = {34},
year = {1993},
}

TY - JOUR
AU - Herrlich, Horst
TI - On the failure of Birkhoff's theorem for locally small based equational categories of algebras
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1993
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 34
IS - 3
SP - 185
EP - 192
LA - eng
KW - small-based algebraic theory; Birkhoff Variety Theorem
UR - http://eudml.org/doc/91523
ER -

References

top
  1. [1] J. Adámek, H. Herrlich and G.E. Strecker, Abstract and Concrete Categories, Wiley1990 Zbl0695.18001MR1051419
  2. [2] B. Banaschewski and H. Herrlich, Subcategories defined by implications, Houston J. Math2 (1976) 149-171 Zbl0344.18002MR401867
  3. [3] G. Birkhoff, On the structure of abstract algebras, Proc. Cambr. Phil. Soc.31 (1935) 433-454 Zbl0013.00105JFM61.1026.07
  4. [4] H. Gaifman, Infinite Boolean polynomicals I, Fund. Math.54 (1964) 230-250 Zbl0126.26404MR168503
  5. [5] O. Garcia and E. Nelson, On the non-existence of free complete distributive lattices, Order1 (1985) 399-403 Zbl0558.06012MR787551
  6. [6] A.W. Hales, On the non-existence of free complete Boolean algebras, Fund. Math.54 (1964) 45-66 Zbl0119.26003MR163863
  7. [7] H. Herrlich, Remarks on categories of algebras defined by a proper class of operations, Quaestiones Math.13 (1990) 385-393 Zbl0733.18004MR1084749
  8. [8] J.R. Isbell, A note on complete closure algebras, Math. Syst. Theory3 (1970) 310-312 Zbl0182.34303MR252296
  9. [9] J.R. Isbell, General functorial semantics I, Amer. J. Math.94 (1972) 535-596 Zbl0439.18009MR396718
  10. [10] V. Kŭrková-Pohlová and V. Koubek, When a generalized algebraic category is monadic, Comment. Math. Univ. Carolinae15 (1974) 577-587 Zbl0294.18004MR360743
  11. [11] F.E.J. Linton, Some aspects of equational categories, Proc. Conf. Cat. Algebra, La Jolla1965, Springer1966, 84-94 Zbl0201.35003MR209335
  12. [12] E.G. Manes, Algebraic Theories, Springer1976 Zbl0353.18007MR419557
  13. [13] J. Reiterman, Large algebraic theories with small algebras, Bull. Austral. Math. Soc.19 (1978) 371-380 Zbl0401.18003MR536889
  14. [14] J. Reiterman, One more categorical model of universal algebra, Math. Z.161 (1978) 137-146 Zbl0363.18007MR498325
  15. [15] J. Reiterman, Structure-semantics relation for non-varietal equational theories, Alg. Univ.10 (1980)8399-401 Zbl0444.18004MR564124
  16. [16] J. Reiterman, The Birkhoff theorem for finite algebras, Alg. Univ.14 (1982) 1-10 Zbl0484.08007MR634411
  17. [17] J. Reiterman, Algebraic theories and varieties of functor algebras, Fund. Math.118 (1983) 59-68 Zbl0529.18005MR736288
  18. [18] J. Reiterman, On locally small based algebraic theories, Comment. Math. Univ. Carolinae27 (1986) 325-340 Zbl0598.18003MR857552
  19. [19] J. Rosický, On algebraic categories, Coll. Math. Soc. J. Bolyai29, Univ. Algebra, Erztergom1977, 663-690 Zbl0495.18005MR660901
  20. [20] J. Rosický, Equational categories, Cahiers Topol. Geom. Diff.22 (1981) 85-95 Zbl0463.18002MR609163
  21. [21] J RosickÝ, Varieties of infinitary universal algebras, Alg. Univ.20 (1985) 123-126 Zbl0559.08002MR790910
  22. [22] J. Slominski, The theory of abstract algebras with infinitary operations, Rozprawy Mat.18 (1959) Zbl0178.34104MR108457

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.