Universal concrete categories and functors

Věra Trnková

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1993)

  • Volume: 34, Issue: 3, page 239-256
  • ISSN: 1245-530X

How to cite


Trnková, Věra. "Universal concrete categories and functors." Cahiers de Topologie et Géométrie Différentielle Catégoriques 34.3 (1993): 239-256. <http://eudml.org/doc/91527>.

author = {Trnková, Věra},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {universal category; universal functor; full embeddings},
language = {eng},
number = {3},
pages = {239-256},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Universal concrete categories and functors},
url = {http://eudml.org/doc/91527},
volume = {34},
year = {1993},

AU - Trnková, Věra
TI - Universal concrete categories and functors
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1993
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 34
IS - 3
SP - 239
EP - 256
LA - eng
KW - universal category; universal functor; full embeddings
UR - http://eudml.org/doc/91527
ER -


  1. 1 J. Adámek, H. Herrlich, G. Strecker, Abstract and Concrete Categories, A Wiley - hiterscience Publication, Jolm Wiley & Sons, Inc.New YorkChichesterBrisbaneTorontoSingapore, 1990. Zbl0695.18001MR1051419
  2. 2 M.E. Adams, H.A. Priestley, De Morgan algebras are universal, Discrete Math.66 (1987) 1-13. Zbl0618.06006MR900924
  3. 3 V. Dlab, B.H. Neumann, Semigroups with few endomorphisms, J. of the Australian Math. Soc.10 (1969) 162-168. Zbl0181.03203MR245706
  4. 4 E. Fried, J. Sichler, Homomorphisms of integral domains of characteristic zero, Trans. Amer. Math. Soc.225 (1977) 163-182. Zbl0362.18006MR422382
  5. 5 P. Goralčík V. Koubek, J. Sichler, Universal varieties of (0,1)-lattices, Canad. J. Math.42 (1990) 470-490. Zbl0709.18003MR1062740
  6. 6 Z. Hedrlín, Extension of structures and full embeddings of categories, Actes du Congrès Internat. des Mathematiciens1970, tome 1, Paris1971, 319-322. Zbl0257.18013MR419554
  7. 7 J.R. Isbell, Two set-theoretical theorems in categories, Fund. Math.53 (1963) 43-49. Zbl0114.01302MR156884
  8. 8 V. Koubek, Each concrete category has a representation by T2-paracompact topological spaces, Comment. Math. Univ. Carolinae15 (1974) 655-663. Zbl0291.54019MR354806
  9. 9 V. Koubek, J. Sichler, Universal varieties of semigroups, J. Austral. Math. Soc. Ser.A36 (1984) 143-152. Zbl0549.20038MR725742
  10. 10 V. Koubek, J. Sichler, Universal varieties of distributive double p-algebras, Glasgow Math. J.26 (1985) 121-131. Zbl0574.06009MR798738
  11. 11 L. Kučera, Every category is a factorization of a concrete one, J. Pure Appl. Alg.1 (1971) 373-376. Zbl0259.18003MR299548
  12. 12 J. Sichler, Testing categories and strong universality, Canad. J. Math.25 (1973) 370-385. Zbl0265.18006MR318258
  13. 13 A. Pultr, V. Trnková, Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories, North Holland, Amsterdam1980. Zbl0418.18004MR563525
  14. 14 V., TrnkováUniversal categories, Comment. Math. Univ. Carolinae7 (1966) 143-206. Zbl0163.01501MR202808
  15. 15 V. Trnková, Universalities, to appear. Zbl0799.18003
  16. 16 V., Trnková J. Reiterman, The categories of presheaves containing any category of algebras, Dissertationes Mathematicae124 (1975) 1-58. Zbl0321.18001MR379622

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.