Categories of closure spaces and corresponding lattices

Claude-Alain Faure

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1994)

  • Volume: 35, Issue: 4, page 309-319
  • ISSN: 1245-530X

How to cite

top

Faure, Claude-Alain. "Categories of closure spaces and corresponding lattices." Cahiers de Topologie et Géométrie Différentielle Catégoriques 35.4 (1994): 309-319. <http://eudml.org/doc/91551>.

@article{Faure1994,
author = {Faure, Claude-Alain},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {duals of complete Heyting algebras; closed-set lattices; closure spaces; distributivity; category of closure spaces; category of lattices},
language = {eng},
number = {4},
pages = {309-319},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Categories of closure spaces and corresponding lattices},
url = {http://eudml.org/doc/91551},
volume = {35},
year = {1994},
}

TY - JOUR
AU - Faure, Claude-Alain
TI - Categories of closure spaces and corresponding lattices
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1994
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 35
IS - 4
SP - 309
EP - 319
LA - eng
KW - duals of complete Heyting algebras; closed-set lattices; closure spaces; distributivity; category of closure spaces; category of lattices
UR - http://eudml.org/doc/91551
ER -

References

top
  1. 1 C.E. Aull and W.J. Thron, Separation axioms between To and T1, Indag. Math.24 (1962), 26-37. Zbl0108.35402
  2. 2 B. Banaschewski and A. Pultr, Variants of openess, Seminar. Math. Inform. Fernuniv. Hagen44 (1992), 39-54. 
  3. 3 F. Borceux, Handbook of Categorical Algebra III, 'Categories of sheaves', Cambridge Univ. Press, to appear. Zbl0911.18001
  4. 4 C.-A. Faure and A. Frölicher, Morphisms of projective geometries and of corresponding lattices, Geom. Dedicata47 (1993), 25-40. Zbl0784.51003
  5. 5 C.-A. Faure and A. Frölicher, Morphisms of projective geometries and semi-linear maps, to appear in Geom. Dedicata. Zbl0826.51002
  6. 6 G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, D.S. Scott, A compendium on continuous lattices, Springer (1980). Zbl0452.06001
  7. 7 P.T. Johnstone, Stone spaces, Cambridge Univ. Press (1982). Zbl0499.54001
  8. 8 P.R. Jones, Basis properties for inverse semigroups, J. Algebra50 (1978), 135-152. Zbl0372.20048
  9. 9 P.R. Jones, Exchange properties and basis properties for closure operators, Colloq. Math.57 (1989), 29-33. Zbl0711.08003
  10. 10 A. Pultr and A. Tozzi, The role of separation axioms in algebraic representation of some topological facts, Seminar. Math. Inform. Fernuniv. Hagen44 (1992), 322-332. 
  11. 11 W.J. Thron, Lattice-equivalence of topological spaces, Duke Math. J.29 (1962), 671-679. Zbl0109.15203

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.