The monodromy groupoid of a Lie groupoid

Ronald Brown; Osman Mucuk

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1995)

  • Volume: 36, Issue: 4, page 345-369
  • ISSN: 1245-530X

How to cite

top

Brown, Ronald, and Mucuk, Osman. "The monodromy groupoid of a Lie groupoid." Cahiers de Topologie et Géométrie Différentielle Catégoriques 36.4 (1995): 345-369. <http://eudml.org/doc/91568>.

@article{Brown1995,
author = {Brown, Ronald, Mucuk, Osman},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {Lie group; universal cover; étale morphism; Lie groupoids; monodromy groupoid; topological groupoids},
language = {eng},
number = {4},
pages = {345-369},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {The monodromy groupoid of a Lie groupoid},
url = {http://eudml.org/doc/91568},
volume = {36},
year = {1995},
}

TY - JOUR
AU - Brown, Ronald
AU - Mucuk, Osman
TI - The monodromy groupoid of a Lie groupoid
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1995
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 36
IS - 4
SP - 345
EP - 369
LA - eng
KW - Lie group; universal cover; étale morphism; Lie groupoids; monodromy groupoid; topological groupoids
UR - http://eudml.org/doc/91568
ER -

References

top
  1. [1] Aof, M.E.- S.A.-F. Topological aspects of holonomy groupoids, PhD Thesis, University of Wales, Bangor, 1988. MR980945
  2. [2] Aof, M.E.-S.A.-F. AND Brown, R., The holonomy groupoid of a locally topological groupoid, Top. Appl., 47 (1992) 97-113. Zbl0855.22007MR1193193
  3. [3] Brown, R., Holonomy and monodromy groupoids, U.C.N.W. Maths Preprint 82.02. 1982. 
  4. [4] Brown, R., Topology: A Ceometric Account of Ceneral Topology, Homotopy Types and the Fundamental Groupoid, Ellis Horwood, Chichester; Prentice Hall, New York, 1988. Zbl0655.55001MR984598
  5. [5] Brown R., AND Danesh-Naruie, G., The fundamental groupoid as a topological groupoid, Proc. Edinburgh Math. Soc.19 (2), 237-244, 1975. Zbl0297.55001MR413096
  6. [6] Brown, R. AND Mucuk, O., Covering groups of non-connected topological groups revisited, Math. Proc. Camb. Phil. Soc.115 (1994) 97-110. Zbl0831.57001MR1253285
  7. [7] Brown, R. AND Mucuk, O., Foliations, locally Lie groupoids and holonoiny, Cah. Top. Géom. Diff. Cat., (1996) (to appear). Zbl0868.22001MR1383447
  8. [8] Chevalley, C., Theory of Lie groups, Princeton University Press, 1946. Zbl0063.00842
  9. [9] Crowell, R. AND Smythe, N., Congruences and geometric amalgamations of groupoids, Houston J. Math., 13 (1987) 499-525. Zbl0654.20064MR929288
  10. [10] Douady, L. AND Lazard, M., Espaces fibrés en algèbres de Lie et en groupes, Invent. Math.1 (1966) 133-151. Zbl0144.01804MR197622
  11. [11] Ehresmann, C., Structures feuillétées, Proc. 5th Conf. Canadian Math. Congress Montreal 1961, "Oeuvres Complètes et Commentées", Amiens1980 -84, II-2, 563-626. Zbl0146.19501
  12. [12] Haefliger, A., Groupoïde d'holonomie et classifiants, Astérisques, 116, (1984) 70-97. Zbl0562.57012MR755163
  13. [13] Higgins, P.J., Categories and groupoids, Van Nostrand, New York, 1971. Zbl0226.20054MR327946
  14. [14] IYANAGA, S. AND KAWADA. Y., (editors), Encyclopaedic Dictionary of Mathematics, Mathematical Society of Japan, and MIT Press, Cambridge, Mass., and London, England, Third edition (1987). Zbl0444.00028MR591028
  15. [15] Kock, A. AND Moerdijk, I., Local equivalence relations and their sheaves, Aarhus Preprint (1991) No. 19, 59pp. 
  16. [16] Mackenzie, K.C.H., Lie groupoids and Lie algebroids in differential geometry, London Math. Soc. Lecture Note Series 124, Cambridge University Press, 1987. Zbl0683.53029MR896907
  17. [17] Mackenzie, K.C.H., Lie algebroids and Lie pseudoalgebras, Bull. London Math. Soc.27 (1995) 97-147. Zbl0829.22001MR1325261
  18. [18] Mucuk, O., Covering groups of non-connected topological groups and the monodromy groupoid of a topological groupoid, PhD Thesis, University of Wales, 1993. 
  19. [19] Phillips, J., The holonomic imperative and the homotopy groupoid of a foliated manifold, Rocky Mountain J. Math., 17 (1987) 151-165. Zbl0641.57011MR882895
  20. [20] Pradines, J., Théorie de Lie pour les groupoïdes différentiables, relation entre propriétés locales et globales, Comptes Rendus Acad. Sci. Paris, Sér A, 263 (1966), 907-910. Zbl0147.41102MR214103
  21. [21] Pradines, J., Théorie de Lie pour les groupoïdes différentiables, Calcul différentiel dans la catégorie des groupoïdes infinitesimaux, ibid, 264 (1967) 245-248. Zbl0154.21704MR216409
  22. [22] Pradines, J.Géométrie différentielle au-dessus d'un groupoïde, ibid, 266 (1968) 1194-1196. Zbl0172.03601MR231306
  23. [23] Pradines, J.Troisième théoreme de Lie pour les groupoïdes différentiables, ibid, 267 (1968) 21-23. Zbl0172.03502MR231414
  24. [24] Pradines, J., Private communication, 1982. 
  25. [25] Taylor, R.L., Covering groups of non-connected topological groups, Proc. Amer. Math. Soc., 5 (1954) 753-768. Zbl0058.02103MR87028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.