Stable closed frame homomorphisms
Cahiers de Topologie et Géométrie Différentielle Catégoriques (1996)
- Volume: 37, Issue: 2, page 123-144
- ISSN: 1245-530X
Access Full Article
topHow to cite
topChen, Xiandong. "Stable closed frame homomorphisms." Cahiers de Topologie et Géométrie Différentielle Catégoriques 37.2 (1996): 123-144. <http://eudml.org/doc/91576>.
@article{Chen1996,
author = {Chen, Xiandong},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {perfect map; stably closed maps},
language = {eng},
number = {2},
pages = {123-144},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Stable closed frame homomorphisms},
url = {http://eudml.org/doc/91576},
volume = {37},
year = {1996},
}
TY - JOUR
AU - Chen, Xiandong
TI - Stable closed frame homomorphisms
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1996
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 37
IS - 2
SP - 123
EP - 144
LA - eng
KW - perfect map; stably closed maps
UR - http://eudml.org/doc/91576
ER -
References
top- [1] B. Banaschewski, SinglyGenerated Frame Extensions, J. Pure Appl. Algebra, 83 (1992) 1-21. Zbl0774.18004MR1190441
- [2] B. Banaschewski, Bourbaki's Fixpoint Lemma Reconsidered, to appear at Comm. Math. Universitatis Carolinae. Zbl0779.06004
- [3] B. Banaschewski, On pushing out frames, Comm. Math. Universitatis Carolinae31, 1(1990) 13-21. Zbl0706.18003MR1056165
- [4] B. Banaschewski, Compactification of Frames, Math. Nachr.149 (1990) . 105-116. Zbl0722.54018MR1124796
- [5] B. Banaschewski, Compact regular frames and the Sikorski theorem, KyungpookMath. J.28 (1988) 1-14. Zbl0676.03029MR986848
- [6] B. Banaschewski, Another look at the localic Tychonoff theorem, Comm. Math. Universitatis Carolinae26 (1985) 619-630. Zbl0667.54009
- [7] B. Banaschewski, Coherent frames, Continuous Lattices, Proceedings Bremen 1979. Springer LNM871 (1981) 1-11. Zbl0461.06010MR646068
- [8] B. Banaschewski and G.C.L. Brümmer, Stably continuous frame, Math. Proc. Camb. Phil. Soc.104 (1988) 7-19. Zbl0676.54045MR938448
- [9] B. Banaschewski and C.J. Mulvey, Stone-Čech compactification of locales I, Houston J. Math.6 (1980) 302-312. Zbl0473.54026MR597771
- [10] X. Chen, On Binary Coproducts of Frames, Comm. Math. Universitatis Carolinae33, 4(1992). Zbl0824.54004MR1240192
- [11] X. Chen, On local connectedness of frames, J. Pure Appl. Algebra79 (1992) 35-43. Zbl0753.54008MR1164120
- [12] X. Chen, Closed Frame Homomorphisms, Doctoral Dissertation, Mc-Master University, 1991.
- [13] C.H. Dowker and D. Papert, Paracompact frames and closed maps, Symp. Math.16 (1975) 93-116. Zbl0324.54015MR410663
- [14] J.R. Isbell, Atomless parts of spaces, Math. Scand.31 (1972) 5-32. Zbl0246.54028MR358725
- [15] M. Jibladze and P.T. Johnstone, The frame of fibrewise closed nuclei, Cahiers de Top. et Géom. Diff. Cat.XXXIII-I (1991) 99 - 112. Zbl0762.06005MR1142684
- [16] P.T. Johnstone, Fibrewise Separation Axioms for locales, Math. Proc. Camb. Phil. Soc.108 (1990) 247 - 255. Zbl0721.54002MR1074712
- [17] P.T. Johnstone, Stone spaces, Cambridge University Press1982. Zbl0499.54001MR698074
- [18] P.T. Johnstone, Gleason cover of a topos, I, J. Pure Appl. Alg.19 (1980), 171-192. Zbl0445.18004MR593253
- [19] P.T. Jonhstone, Gleason cover of a topos, II, J. Pure Appl. Alg.22 (1981), 229-247. Zbl0445.18005MR629332
- [20] P.T. Johnstone, Factorization and pullback theorems for localic geometric morphisms, Univ. Cath. de Louvain, Sém. de Math. Pure, Rapport no. 79.
- [21] A. Pultr and A. Tozzi, Notes on Kuratowski-Mrówka theorems in point-free context, Cahiers de Top. et Géom. Diff. Cat. XXX III-I (1992) 3 - 14. Zbl0772.54016MR1163423
- [22] J.J.C. Vermeulen, Some constructive results related to compactness and the (strong) Hausdorff property for locales, Category Theory, Proceedings Como 1990, SpringerLNM1488 (1991) 401-409. Zbl0739.18001MR1173026
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.