Stable closed frame homomorphisms

Xiandong Chen

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1996)

  • Volume: 37, Issue: 2, page 123-144
  • ISSN: 1245-530X

How to cite

top

Chen, Xiandong. "Stable closed frame homomorphisms." Cahiers de Topologie et Géométrie Différentielle Catégoriques 37.2 (1996): 123-144. <http://eudml.org/doc/91576>.

@article{Chen1996,
author = {Chen, Xiandong},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {perfect map; stably closed maps},
language = {eng},
number = {2},
pages = {123-144},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Stable closed frame homomorphisms},
url = {http://eudml.org/doc/91576},
volume = {37},
year = {1996},
}

TY - JOUR
AU - Chen, Xiandong
TI - Stable closed frame homomorphisms
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1996
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 37
IS - 2
SP - 123
EP - 144
LA - eng
KW - perfect map; stably closed maps
UR - http://eudml.org/doc/91576
ER -

References

top
  1. [1] B. Banaschewski, SinglyGenerated Frame Extensions, J. Pure Appl. Algebra, 83 (1992) 1-21. Zbl0774.18004MR1190441
  2. [2] B. Banaschewski, Bourbaki's Fixpoint Lemma Reconsidered, to appear at Comm. Math. Universitatis Carolinae. Zbl0779.06004
  3. [3] B. Banaschewski, On pushing out frames, Comm. Math. Universitatis Carolinae31, 1(1990) 13-21. Zbl0706.18003MR1056165
  4. [4] B. Banaschewski, Compactification of Frames, Math. Nachr.149 (1990) . 105-116. Zbl0722.54018MR1124796
  5. [5] B. Banaschewski, Compact regular frames and the Sikorski theorem, KyungpookMath. J.28 (1988) 1-14. Zbl0676.03029MR986848
  6. [6] B. Banaschewski, Another look at the localic Tychonoff theorem, Comm. Math. Universitatis Carolinae26 (1985) 619-630. Zbl0667.54009
  7. [7] B. Banaschewski, Coherent frames, Continuous Lattices, Proceedings Bremen 1979. Springer LNM871 (1981) 1-11. Zbl0461.06010MR646068
  8. [8] B. Banaschewski and G.C.L. Brümmer, Stably continuous frame, Math. Proc. Camb. Phil. Soc.104 (1988) 7-19. Zbl0676.54045MR938448
  9. [9] B. Banaschewski and C.J. Mulvey, Stone-Čech compactification of locales I, Houston J. Math.6 (1980) 302-312. Zbl0473.54026MR597771
  10. [10] X. Chen, On Binary Coproducts of Frames, Comm. Math. Universitatis Carolinae33, 4(1992). Zbl0824.54004MR1240192
  11. [11] X. Chen, On local connectedness of frames, J. Pure Appl. Algebra79 (1992) 35-43. Zbl0753.54008MR1164120
  12. [12] X. Chen, Closed Frame Homomorphisms, Doctoral Dissertation, Mc-Master University, 1991. 
  13. [13] C.H. Dowker and D. Papert, Paracompact frames and closed maps, Symp. Math.16 (1975) 93-116. Zbl0324.54015MR410663
  14. [14] J.R. Isbell, Atomless parts of spaces, Math. Scand.31 (1972) 5-32. Zbl0246.54028MR358725
  15. [15] M. Jibladze and P.T. Johnstone, The frame of fibrewise closed nuclei, Cahiers de Top. et Géom. Diff. Cat.XXXIII-I (1991) 99 - 112. Zbl0762.06005MR1142684
  16. [16] P.T. Johnstone, Fibrewise Separation Axioms for locales, Math. Proc. Camb. Phil. Soc.108 (1990) 247 - 255. Zbl0721.54002MR1074712
  17. [17] P.T. Johnstone, Stone spaces, Cambridge University Press1982. Zbl0499.54001MR698074
  18. [18] P.T. Johnstone, Gleason cover of a topos, I, J. Pure Appl. Alg.19 (1980), 171-192. Zbl0445.18004MR593253
  19. [19] P.T. Jonhstone, Gleason cover of a topos, II, J. Pure Appl. Alg.22 (1981), 229-247. Zbl0445.18005MR629332
  20. [20] P.T. Johnstone, Factorization and pullback theorems for localic geometric morphisms, Univ. Cath. de Louvain, Sém. de Math. Pure, Rapport no. 79. 
  21. [21] A. Pultr and A. Tozzi, Notes on Kuratowski-Mrówka theorems in point-free context, Cahiers de Top. et Géom. Diff. Cat. XXX III-I (1992) 3 - 14. Zbl0772.54016MR1163423
  22. [22] J.J.C. Vermeulen, Some constructive results related to compactness and the (strong) Hausdorff property for locales, Category Theory, Proceedings Como 1990, SpringerLNM1488 (1991) 401-409. Zbl0739.18001MR1173026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.