A theory of enriched sheaves

Francis Borceux; Carmen Quinteiro

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1996)

  • Volume: 37, Issue: 2, page 145-162
  • ISSN: 1245-530X

How to cite

top

Borceux, Francis, and Quinteiro, Carmen. "A theory of enriched sheaves." Cahiers de Topologie et Géométrie Différentielle Catégoriques 37.2 (1996): 145-162. <http://eudml.org/doc/91577>.

@article{Borceux1996,
author = {Borceux, Francis, Quinteiro, Carmen},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {Grothendieck topology; localization; universal closure operator},
language = {eng},
number = {2},
pages = {145-162},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {A theory of enriched sheaves},
url = {http://eudml.org/doc/91577},
volume = {37},
year = {1996},
}

TY - JOUR
AU - Borceux, Francis
AU - Quinteiro, Carmen
TI - A theory of enriched sheaves
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1996
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 37
IS - 2
SP - 145
EP - 162
LA - eng
KW - Grothendieck topology; localization; universal closure operator
UR - http://eudml.org/doc/91577
ER -

References

top
  1. [1] M. Barr, Exact Categories, Springer Lect. Notes in Math.2361-120, (1971) Zbl0223.18010
  2. [2] F. Borceux, Handbook of Categorical Algebra I, II, III, Encyclopedia of Math. and its Appl.50, 51, 52, Cambridge Univ. Press, (1994) Zbl0911.18001
  3. [3] S. Eilenberg and G.M. Kelly, Closed categories, Proc. Conf. on Categorical Alg. La Jolla1965, Springer, 421-562 (1966) Zbl0192.10604MR225841
  4. [4] P. Gabriel, Des categories abéliennes, Bull. Soc. Math. de France90, 1962 Zbl0201.35602MR232821
  5. [5] P. Gabriel and F. Ulmer, Lokal präsentierbare Kategorien, Springer Lect. Notes in Math.221, 1971 Zbl0225.18004MR327863
  6. [6] P. Freyd and G.M. Kelly, Categories of continuous functors I, J. of Pure and Appl. Algebra2169-191 (1974) Zbl0257.18005MR322004
  7. [7] G.M. Kelly, A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on, Bull. of theAustralian Math. Soc.221-83 (1980) Zbl0437.18004MR589937
  8. [8] G.M. Kelly, Basic concepts of Enriched Category Theory, London Math. Soc. Lect. Note Series64, Cambridge Univ. Press, 1982 Zbl0478.18005MR651714
  9. [9] G.M. KellyStructures defined by finite limits in the enriched context, I, Cahiers de Top. et Géom. Diff.XXIII-13-42 (1982) Zbl0538.18006MR648793
  10. [10] H. Schubert, Categories, Springer (1972) Zbl0253.18002MR349793

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.