Constructing quantales and their modules from monoidal categories

Susan B. Niefield

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1996)

  • Volume: 37, Issue: 2, page 163-176
  • ISSN: 1245-530X

How to cite

top

Niefield, Susan B.. "Constructing quantales and their modules from monoidal categories." Cahiers de Topologie et Géométrie Différentielle Catégoriques 37.2 (1996): 163-176. <http://eudml.org/doc/91578>.

@article{Niefield1996,
author = {Niefield, Susan B.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {monoidal category; adjunction; category of monoids; quantales; modules; locale},
language = {eng},
number = {2},
pages = {163-176},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Constructing quantales and their modules from monoidal categories},
url = {http://eudml.org/doc/91578},
volume = {37},
year = {1996},
}

TY - JOUR
AU - Niefield, Susan B.
TI - Constructing quantales and their modules from monoidal categories
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1996
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 37
IS - 2
SP - 163
EP - 176
LA - eng
KW - monoidal category; adjunction; category of monoids; quantales; modules; locale
UR - http://eudml.org/doc/91578
ER -

References

top
  1. [1] S. Abramsky and S. Vickers, Quantales, observational logic and process semantics, Math. Struct. in Comp. Science3 (1993), 161-227. Zbl0823.06011MR1224222
  2. [2] D.D. Anderson, Fake rings, fake modules, and duality, J. Algebra47 (1977), 425-432. Zbl0383.13011MR447208
  3. [3] R.P. Dilworth, Non-commutative residuated lattices, Trans. Amer. Math. Soc.46 (1939), 426-444. Zbl0022.10402MR230JFM65.0084.02
  4. [4] S. Eilenberg and G.M. Kelly, Closed categories, Proc. La Jolla Conference on Categorical Algebra, Springer, 1966. Zbl0192.10604MR225841
  5. [5] P.J. Freyd and G.M. Kelly, Categories of continuous functors, I, J. Pure Appl. Alg2 (1972) 170-191. Zbl0257.18005MR322004
  6. [6] J.-Y. Girard, Linear logic, Theor. Comp. Sci.50 (1987), 1-102. Zbl0625.03037MR899269
  7. [7] J. Isbell, Subobjects, adequacy, completemess and categories of algebras, Rozprawy Mat.36 (1964) 1-32. Zbl0133.26703MR163939
  8. [8] A. Joyal and M. Tierney, An Extension of the Galois Theory of Grothendieck, Amer. Math. Soc. Memoirs309 (1984). Zbl0541.18002MR756176
  9. [9] G.M. Kelly, Basic Concepts of Enriched Category Theory, London Math. Soc. Lecture Note Series64, Cambridge University Press, 1982. Zbl0478.18005MR651714
  10. [10] J. Lambek, The mathematics of sentence structure, Amer. Math. Monthly65(3) (1958) 154-170. Zbl0080.00702MR106170
  11. [11] S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Mathematics5, Springer-Verlag, 1971. Zbl0232.18001MR1712872
  12. [12] C.J. Mulvey, &, Supp. Rend. Circ. Mat. Palermo12 (1986) 99-104. Zbl0633.46065MR853151
  13. [13] S.B. Niefield and K. R. Rosenthal, DeMorgan's law and the spectrum of a commutative ring, J. Algebra93 (1985) 169-181. Zbl0562.18005MR780490
  14. [14] 12. S.B. Niefield and K.R. Rosenthal, A note on the algebraic de Morgan's law, Cahiers de Top. et Geom. Diff. Cat.26 (1985) 115-120. Zbl0575.13002MR794750
  15. [15] S.B. Niefield and K.R. Rosenthal, Ideals of closed categories, J. Pure Appl. Alg51 (1988) 293-304. Zbl0649.18009MR946580

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.