Constructing quantales and their modules from monoidal categories

Susan B. Niefield

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1996)

  • Volume: 37, Issue: 2, page 163-176
  • ISSN: 1245-530X

How to cite

top

Niefield, Susan B.. "Constructing quantales and their modules from monoidal categories." Cahiers de Topologie et Géométrie Différentielle Catégoriques 37.2 (1996): 163-176. <http://eudml.org/doc/91578>.

@article{Niefield1996,
author = {Niefield, Susan B.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {monoidal category; adjunction; category of monoids; quantales; modules; locale},
language = {eng},
number = {2},
pages = {163-176},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Constructing quantales and their modules from monoidal categories},
url = {http://eudml.org/doc/91578},
volume = {37},
year = {1996},
}

TY - JOUR
AU - Niefield, Susan B.
TI - Constructing quantales and their modules from monoidal categories
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1996
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 37
IS - 2
SP - 163
EP - 176
LA - eng
KW - monoidal category; adjunction; category of monoids; quantales; modules; locale
UR - http://eudml.org/doc/91578
ER -

References

top
  1. [1] S. Abramsky and S. Vickers, Quantales, observational logic and process semantics, Math. Struct. in Comp. Science3 (1993), 161-227. Zbl0823.06011MR1224222
  2. [2] D.D. Anderson, Fake rings, fake modules, and duality, J. Algebra47 (1977), 425-432. Zbl0383.13011MR447208
  3. [3] R.P. Dilworth, Non-commutative residuated lattices, Trans. Amer. Math. Soc.46 (1939), 426-444. Zbl0022.10402MR230JFM65.0084.02
  4. [4] S. Eilenberg and G.M. Kelly, Closed categories, Proc. La Jolla Conference on Categorical Algebra, Springer, 1966. Zbl0192.10604MR225841
  5. [5] P.J. Freyd and G.M. Kelly, Categories of continuous functors, I, J. Pure Appl. Alg2 (1972) 170-191. Zbl0257.18005MR322004
  6. [6] J.-Y. Girard, Linear logic, Theor. Comp. Sci.50 (1987), 1-102. Zbl0625.03037MR899269
  7. [7] J. Isbell, Subobjects, adequacy, completemess and categories of algebras, Rozprawy Mat.36 (1964) 1-32. Zbl0133.26703MR163939
  8. [8] A. Joyal and M. Tierney, An Extension of the Galois Theory of Grothendieck, Amer. Math. Soc. Memoirs309 (1984). Zbl0541.18002MR756176
  9. [9] G.M. Kelly, Basic Concepts of Enriched Category Theory, London Math. Soc. Lecture Note Series64, Cambridge University Press, 1982. Zbl0478.18005MR651714
  10. [10] J. Lambek, The mathematics of sentence structure, Amer. Math. Monthly65(3) (1958) 154-170. Zbl0080.00702MR106170
  11. [11] S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Mathematics5, Springer-Verlag, 1971. Zbl0232.18001MR1712872
  12. [12] C.J. Mulvey, &, Supp. Rend. Circ. Mat. Palermo12 (1986) 99-104. Zbl0633.46065MR853151
  13. [13] S.B. Niefield and K. R. Rosenthal, DeMorgan's law and the spectrum of a commutative ring, J. Algebra93 (1985) 169-181. Zbl0562.18005MR780490
  14. [14] 12. S.B. Niefield and K.R. Rosenthal, A note on the algebraic de Morgan's law, Cahiers de Top. et Geom. Diff. Cat.26 (1985) 115-120. Zbl0575.13002MR794750
  15. [15] S.B. Niefield and K.R. Rosenthal, Ideals of closed categories, J. Pure Appl. Alg51 (1988) 293-304. Zbl0649.18009MR946580

NotesEmbed ?

top

You must be logged in to post comments.