Subobjects, adequacy, completeness and categories of algebras

J. R. Isbell

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1964

Abstract

top
ContentsIntroduction....................................................................................... 31. Ideals............................................................................................. 52. Completeness............................................................................. 83. Adequate and reflexive............................................................... 124. Full categories of algebras....................................................... 165. Quasi-primitive categories of algebras.................................. 106. Zeros............................................................................................. 257. Inadequacy................................................................................... 268. Adequate and measurable....................................................... 289. Direct sums.................................................................................. 31References....................................................................................... 32

How to cite

top

J. R. Isbell. Subobjects, adequacy, completeness and categories of algebras. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1964. <http://eudml.org/doc/268641>.

@book{J1964,
abstract = {ContentsIntroduction....................................................................................... 31. Ideals............................................................................................. 52. Completeness............................................................................. 83. Adequate and reflexive............................................................... 124. Full categories of algebras....................................................... 165. Quasi-primitive categories of algebras.................................. 106. Zeros............................................................................................. 257. Inadequacy................................................................................... 268. Adequate and measurable....................................................... 289. Direct sums.................................................................................. 31References....................................................................................... 32},
author = {J. R. Isbell},
keywords = {general algebraic structures},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Subobjects, adequacy, completeness and categories of algebras},
url = {http://eudml.org/doc/268641},
year = {1964},
}

TY - BOOK
AU - J. R. Isbell
TI - Subobjects, adequacy, completeness and categories of algebras
PY - 1964
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - ContentsIntroduction....................................................................................... 31. Ideals............................................................................................. 52. Completeness............................................................................. 83. Adequate and reflexive............................................................... 124. Full categories of algebras....................................................... 165. Quasi-primitive categories of algebras.................................. 106. Zeros............................................................................................. 257. Inadequacy................................................................................... 268. Adequate and measurable....................................................... 289. Direct sums.................................................................................. 31References....................................................................................... 32
LA - eng
KW - general algebraic structures
UR - http://eudml.org/doc/268641
ER -

Citations in EuDML Documents

top
  1. Hans Ehrbar, Oswald Wyler, Images in categories as reflections
  2. J. V. Michalowicz, A special tricategory
  3. Harald Lindner, Morita equivalences of enriched categories
  4. Susan B. Niefield, Constructing quantales and their modules from monoidal categories
  5. Věra Pohlová, Factorization and non-algebraic categories
  6. Jiří Rosický, One example concerning testing categories
  7. Aleš Pultr, Věra Trnková, On realization and boundability of concrete categories in which the morphisms are choiced by local conditions
  8. Zdeněk Hedrlín, Petr Vopěnka, An undecidable theorem concerning full embeddings into categories of algebras
  9. Zdeněk Hedrlín, Aleš Pultr, On categorial embeddings of topological structures into algebraic
  10. P. T. Johnstone, Factorization theorems for geometric morphisms, I

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.