Simplicial groups as models for n -types

J. G. Cabello

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1997)

  • Volume: 38, Issue: 1, page 67-92
  • ISSN: 1245-530X

How to cite

top

Cabello, J. G.. "Simplicial groups as models for $n$-types." Cahiers de Topologie et Géométrie Différentielle Catégoriques 38.1 (1997): 67-92. <http://eudml.org/doc/91587>.

@article{Cabello1997,
author = {Cabello, J. G.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {closed model category; hypercrossed complex; hypergroupoid; -type; simplicial group},
language = {eng},
number = {1},
pages = {67-92},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Simplicial groups as models for $n$-types},
url = {http://eudml.org/doc/91587},
volume = {38},
year = {1997},
}

TY - JOUR
AU - Cabello, J. G.
TI - Simplicial groups as models for $n$-types
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1997
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 38
IS - 1
SP - 67
EP - 92
LA - eng
KW - closed model category; hypercrossed complex; hypergroupoid; -type; simplicial group
UR - http://eudml.org/doc/91587
ER -

References

top
  1. [1] R. Brown and M. Golasinski, A model structure for the homotopy category of crossed complexes, Cahiers de Top. et Géom. Diff. Cat.30 (1989), 61-82. Zbl0679.55016MR1000831
  2. [2] J.G. Cabello, Estructuras de modelos de Quillen para categorías que modelan algebraicamente tipos de homotopía de espacios, Ph.D.thesis, Univ. Granada, (1993). 
  3. [3] J.G. Cabello and A.R. Carzon, Closed model structures for algebraic models of n-types, J. of Pure and Applied Algebra103, (1995), 287-302. Zbl0837.55014MR1357790
  4. [4] J.G. Cabello and A.R. Garzon, Quillen's theory for algebraic model of n-types, Extracta Math. Vol 9, No 1, (1904), 42-48. Zbl1032.55500MR1304150
  5. [5] P. Carrasco and A.M. Cegarra, Group theoretic algebraic models for homotopy types, J. of Pure and Applied Algebra75, (1991), 195-235. Zbl0742.55003MR1137837
  6. [6] S.E. Crans, Quillen closed model structures for sheaves, to appear in J. of Pure and Applied Algebra. Zbl0828.18005MR1346427
  7. [7] E.B. Curtis, Simplicial homotopy theory, Advances in Math.6 (1971), 107-209. Zbl0225.55002MR279808
  8. [8] S. Eilenberg and S. Mac Lane, Relatiotis between homology and homotopy groups, Proc. Nat. Acad. Sci. USA29, (1943). Zbl0061.40701
  9. [9] C. Elvira, L.J. Hernández, Closed model categories for the n-type of spaces and simplicial sels, Math. proc. Camb. Phil. Soc., (1995). Zbl0837.55013
  10. [10] J.I. Extremiana, L.J. Hernández and M.T. Rivas, A closed model category for (n - 1)-connected spaces, preprint, (1995). Zbl0866.55008
  11. [11] P. Gabriel and M. Zisman, Calculus of Fractions and Homotopy theory, Ergebnisse der Mathematik, vol. 35, Springer-Verlag, Berlin (1967). Zbl0186.56802MR210125
  12. [12] P. Glenn, Realization of cohomolgy classes in arbitrary exact categories, J. of Pure and Applied Algebra, 25, (1982), 33-107: Zbl0487.18015MR660389
  13. [13] P.J. Higgins, Groups with multiple operators, Proc. London Math. Soc.6, (1956), 366-416. Zbl0073.01704MR82492
  14. [14] L. Hernández and T. Porter, Categorical models of n-types for pro-crossed complexes and Jn-spaces, L.N. in Math.1509, (1992), 148-185. Zbl0752.55005
  15. [15] D.M. Kan, On hnntntopy theory and CSS groups, Ann. of Math.68, (1958), 38-53. Zbl0091.36902
  16. [16] J.P. May, Simplicial objects in algebraic topology, Nostrand, New York, (1976). Zbl0165.26004MR222892
  17. [17] T. Porter, n-types of simplicial groups and crossed n-cubes, Topology32, 1 (1993), 5-24. Zbl0776.55012MR1204402
  18. [18] D. Quillen, Homotopical Algebra, L.N. in Math43, Springer (1967). Zbl0168.20903MR223432
  19. [19] D. QuiMen, Rational Homotopy Theory, Ann. of Math.90, (1969). Zbl0191.53702MR258031
  20. [20] J.H.C. Whitehead, Combinatorial Homotopy I and II, Bull. Amer. Soc.55, (1949), 213-245 and 496-543. Zbl0040.38704MR30759

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.