A model structure for the homotopy theory of crossed complexes

Ronald Brown; Marek Golasinski

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1989)

  • Volume: 30, Issue: 1, page 61-82
  • ISSN: 1245-530X

How to cite

top

Brown, Ronald, and Golasinski, Marek. "A model structure for the homotopy theory of crossed complexes." Cahiers de Topologie et Géométrie Différentielle Catégoriques 30.1 (1989): 61-82. <http://eudml.org/doc/91432>.

@article{Brown1989,
author = {Brown, Ronald, Golasinski, Marek},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {closed model category; Crossed complexes; crossed module structure; Quillen model category structure; weak equivalence; fibration; cofibration},
language = {eng},
number = {1},
pages = {61-82},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {A model structure for the homotopy theory of crossed complexes},
url = {http://eudml.org/doc/91432},
volume = {30},
year = {1989},
}

TY - JOUR
AU - Brown, Ronald
AU - Golasinski, Marek
TI - A model structure for the homotopy theory of crossed complexes
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1989
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 30
IS - 1
SP - 61
EP - 82
LA - eng
KW - closed model category; Crossed complexes; crossed module structure; Quillen model category structure; weak equivalence; fibration; cofibration
UR - http://eudml.org/doc/91432
ER -

References

top
  1. 1 H.J. Baues, Algebraic homotopy, Cambridge University Press, Cambridge, 1989. Zbl0688.55001MR985099
  2. 2 H.J. Baues, "The homotopy types of 4-dimensionsal complexes", Preprint, Bonn1986. MR1361886
  3. 3 R. Brown, "Fibrations of groupoids", J. Algebra15 (1970), 103-132. Zbl0194.02202MR271194
  4. 4 R. Brown, "Some non-abelian methods in homotopy theory and homological algebra", Categorical topology, Proc. Conf. on Categorical Topology, Toledo, Ohio1983, ed. H.L. Bentley et al, Heldermann-Verlag, Berlin (1984), 108-146. Zbl0558.55001MR785014
  5. 5 R. Brown, "Non-Abelian cohomology and the homotopy classification of maps", Homotopie algébrique et algèbre locale, Conf. Marseille-Luminy1982, ed. J.-M.Lemaire et J.-C. Thomas, Astérisque113-114 (1984), 167-172. Zbl0548.55018MR749052
  6. 6 R. Brown, "Coproducts of crossed P-modules: applications to second homotopy groups and to the homology of groups", Topology, 23 (1984), 337-345. Zbl0519.55009MR770569
  7. 7 R. Brown& P.J. Higgins, "The algebra of cubes", J. Pure Appl. Algebra21 (1981), 233-260. Zbl0468.55007MR617135
  8. 8 R. Brown& P.J. Higgins, "Colimit theorems for relative homotopy groups", J. Pure Appl. Algebra22 (1981), 11-41. Zbl0475.55009MR621285
  9. 9 R. Brown & P.J. Higgins, "Crossed complexes and non-Abelian extensions", Int. Conf. on Category Theory, Gummersbach (1981), Lecture Notes in Math.962, Springer (1982), 39-50. Zbl0504.55018MR682942
  10. 10 R. Brown& P.J. Higgins, "Tensor products and homotopies for ω-groupoids and crossed complexes ", J. Pure Appl. Algebra47 (1987), 1-33. Zbl0621.55009
  11. 11 R. Brown & P.J. Higgins, "The classifying space of a crossed complex" (in preparation). Zbl0732.55007
  12. 12 R. Brown & P.J. Higgins, "The relation between crossed complexes and chain complexes with a groupoid of operators" (in preparation). Zbl0691.18003
  13. 13 R. Brown & J. Huebschmann, "Identitites among relations", in Low-dimensional Topology, ed. R. Brown & T.L. Thickstun, London Math. Soc. Lecture Notes Series 48, C.U. P. (1982), 153-202. Zbl0485.57001MR662431
  14. 14 P. Gabriel& M. Zisman, Calculus of fractions and homotopy theory, Springer-Verlag, Berlin1967. Zbl0186.56802MR210125
  15. 15 D.F. Holt, "An interpretation of the cohomology groups Hn(G,M) ", J. Alg.16 (1970), 307-318. Zbl0699.20040
  16. 16 J. Howie, "Pullback functors and crossed complexes", Cahiers de Top. et Géom. Diff.XX (1979), 281-295. Zbl0429.18007MR557084
  17. 17 J. Huebschmann, "Crossed n-fold extensions and cohomology", Comm. Math. Helv.55 (1980), 302-314. Zbl0443.18019MR576608
  18. 18 K.H. Kamps, "Kan-Bedingungen und abstrakte Homotopietheorie ", Math. Z.124 (1972), 215-236. Zbl0223.55020MR295346
  19. 19 K.H. Kamps & T. Porter, "Abstract homotopy and simple homotopy theory", U.C.N.W. Pure Maths, Preprint 86.9. Zbl0890.55014MR1464944
  20. 20 A.S.-T. Lue, "Cohomology of groups relative to a variety ", J. Alg.69, (1979), 319-320. Zbl0468.20044MR613866
  21. 21 S. Mac Lane, "Historical note", J. Alg.69 (1979), 319-320. 
  22. 22 D.G. Quillen, "Homotopical algebra", Lecture Notes in Math.43, Springer (1967). Zbl0168.20903MR223432
  23. 23 C.B. Spencer, "An abstract setting for homotopy pushouts and pullbacks", Cahiers de Top. et Géom. Diff.XVIII (1977), 409-429. Zbl0378.18008MR486054
  24. 24 C.B. Spencer & Y.L. Wong, "Pullback and pushout squares in a special double category with connection", Cahiers de Top. et Géom. Diff.XXIV (1983). 161-192. Zbl0519.18008MR710039
  25. 25 R.M. Vogt, "A note on homotopy equivalences", Proc. A.M.S.32 (1972), 627-62. Zbl0241.55009MR293632
  26. 26 J.H.C. Whitehead, "Combinatorial homotopy II", Bull. A. M.S.55 (1949), 453-469. Zbl0040.38801MR30760
  27. 27 J.H.C. Whitehead, "Simple homotopy type", Amer. J. Math.72 (1950), 1-57. Zbl0040.38901MR35437
  28. 28 R. Brown & P.J. Higgins, "Non-abelian cohomology with coefficients in a crossed complex" (in preparation). 

NotesEmbed ?

top

You must be logged in to post comments.