Morita equivalence for regular algebras

F. Grandjean; E. M. Vitale

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1998)

  • Volume: 39, Issue: 2, page 137-153
  • ISSN: 1245-530X

How to cite

top

Grandjean, F., and Vitale, E. M.. "Morita equivalence for regular algebras." Cahiers de Topologie et Géométrie Différentielle Catégoriques 39.2 (1998): 137-153. <http://eudml.org/doc/91603>.

@article{Grandjean1998,
author = {Grandjean, F., Vitale, E. M.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {Picard groups; categories of regular modules; regular algebras; coproduct-preserving right exact functors; colimit-preserving functors; Morita theory; bicategories; regular bimodules; Brauer groups; Morita equivalences},
language = {eng},
number = {2},
pages = {137-153},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Morita equivalence for regular algebras},
url = {http://eudml.org/doc/91603},
volume = {39},
year = {1998},
}

TY - JOUR
AU - Grandjean, F.
AU - Vitale, E. M.
TI - Morita equivalence for regular algebras
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1998
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 39
IS - 2
SP - 137
EP - 153
LA - eng
KW - Picard groups; categories of regular modules; regular algebras; coproduct-preserving right exact functors; colimit-preserving functors; Morita theory; bicategories; regular bimodules; Brauer groups; Morita equivalences
UR - http://eudml.org/doc/91603
ER -

References

top
  1. [1] G.D. Abrams: Morita equivalence for rings with local units, Commun. Algebra11 (1983), pp. 801-837. Zbl0503.16034MR695890
  2. [2] G.D. Abrams, P.N. Anh, L. Marki: A topological approach to Morita equivalence for rings with local units, Rocky Mt. J. Math.22 (1992), pp. 405-416. Zbl0804.16043MR1180708
  3. [3] P.N. Anh, L. Marki: Morita equivalence for rings without identity, Tsukuba J. Math.11 (1987), pp. 1-16. Zbl0627.16031MR899719
  4. [4] M. Barr: Exact categories, Lecture Notes in Math.236, Springer Verlag (1971), pp. 1-120. Zbl0223.18010
  5. [5] H. Bass: Algebraic K-Theory, W.A. Benjamin Inc. (1968). Zbl0174.30302MR249491
  6. [6] J. Btnabou: Introduction to bicategories, Lecture Notes in Math.47, Springer Verlag (1967), pp. 1-77. MR220789
  7. [7] F. Borceux: Handbook of categorical algebra, vol. 1 and 2, Encyclopedia of Math.50-51, Cambridge University Press (1994). Zbl0803.18001
  8. [8] N. Bourbaki: Elements de mathématiques, Algèbre, chap. 1 à 3, Hermann (1970) . Zbl0211.02401MR274237
  9. [9] S. Caenepeel: Brauer groups, Hopf algebras and Galois theory, Kluwer Academic Publishers, to appear. Zbl0898.16001MR1610222
  10. [10] S. Caenepeel, F. Grandjean: A note on Taylor's Brauer group, Pacific J. Math., to appear. Zbl0940.14011MR1665054
  11. [11] F. Grand Jean: Les aLgebres d 'Azumaya sans unité, Thesis, Université Catholique de Louvain (1997). 
  12. [12] G.M. Kelly, M.L. Laplaza: Coherence for compact closed categories, J. Pure Appl. Algebra19 (1980), pp. 193-213. Zbl0447.18005MR593254
  13. [13] M. Orzech, C. Small: The Brauer group of a commutative ring, Lecture Notes in Pure and Appl. Math.11, Marcel Dekker Inc. (1975). Zbl0302.13001MR457422
  14. [14] I. Raeburn, J.L. Taylor: The bigger Brauer group and étale cohomology, Pacific J. Math.119 (1985), pp. 445-463. Zbl0596.13006MR803128
  15. [15] S.D. Schack: Bimodules, the Brauer group, Morita equivalence and cohomology, J. Pure Appl. Algebra80 (1992), pp. 315-325. Zbl0765.16002MR1170717
  16. [16] J.L. Taylor: A bigger Brauer group, Pacific J. Math.103 (1982), pp. 163-203. Zbl0528.13007MR687968
  17. [17] E.M. Vitale: The Brauer and Brauer-Taylor groups of a symmetric monoidal category, Cah. Top. Géom. Diff. Catégoriques37 (1996), pp. 91-122. Zbl0856.18007MR1394505
  18. [18] E.M. Vitale: Localizations of algebraic categories, J. Pure Appl. Algebra108 (1996), pp. 315-320. Zbl0854.18007MR1384009
  19. [19] G.C. Wraith: Algebraic theories, Lecture Notes Series 22, Matematisk Institut, Aarhus Universitet (1970). Zbl0249.18013MR262334
  20. [20] D. Zelinski: Brauer groups, Lecture Notes in Pure and Appl. Math.26, Marcel Dekker Inc. (1977), pp. 69-101. Zbl0356.13002MR444634

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.