The Brauer and Brauer-Taylor groups of a symmetric monoidal category

Enrico M. Vitale

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1996)

  • Volume: 37, Issue: 2, page 91-122
  • ISSN: 1245-530X

How to cite

top

Vitale, Enrico M.. "The Brauer and Brauer-Taylor groups of a symmetric monoidal category." Cahiers de Topologie et Géométrie Différentielle Catégoriques 37.2 (1996): 91-122. <http://eudml.org/doc/91580>.

@article{Vitale1996,
author = {Vitale, Enrico M.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {Azumaya algebra; Brauer group; symmetric monoidal categories; Brauer-Taylor group; Picard group},
language = {eng},
number = {2},
pages = {91-122},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {The Brauer and Brauer-Taylor groups of a symmetric monoidal category},
url = {http://eudml.org/doc/91580},
volume = {37},
year = {1996},
}

TY - JOUR
AU - Vitale, Enrico M.
TI - The Brauer and Brauer-Taylor groups of a symmetric monoidal category
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1996
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 37
IS - 2
SP - 91
EP - 122
LA - eng
KW - Azumaya algebra; Brauer group; symmetric monoidal categories; Brauer-Taylor group; Picard group
UR - http://eudml.org/doc/91580
ER -

References

top
  1. [1] Auslander B.: The Brauer group of a ringed space, J. Algebra4 (1966), pp. 220-273. Zbl0144.03401MR199213
  2. [2] Auslander M.& Goldman O.: The Brauer group of a commutative ring, Trans. Amer. Math. Soc.97 (1960), pp. 367-409. Zbl0100.26304MR121392
  3. [3] Barja Perez J.M.: Teoremas de Morita para triples en categorias cerradas, Alxebra20 (1978). Zbl0376.18004
  4. [4] Bass H.: Topics in Algebraic K-Theory, Tata Institut of Fundamental Research, Bombay (1967). Zbl0226.13006
  5. [5] Bass H.: Algebraic K-Theory, W.A. Benjamin Inc. (1968). Zbl0174.30302MR249491
  6. [6] Borceux F.: Handbook of Categorical Algebra 2, Encyclopedia of Math.51, Cambridge University Press (1994). Zbl0843.18001MR1313497
  7. [7] Borceux F. & Vitale E.M.: A Morita theorem in topology, Suppl. Rend. Circ. Mat. PalermoII-29 (1992), pp. 353-362. Zbl0781.06013MR1197179
  8. [8] Borceux F. & Vitale E.M.: On the notion of bimodel for functorial semantics, Applied Categorical Structures2 (1994), pp. 283-295. Zbl0804.18003MR1285885
  9. [9] Caenepeel S.: Etale cohomology and the Brauer group, to appear. Zbl0596.13006
  10. [10] Dukarm J.: Morita equivalences of algebraic theories, Colloquium Mathematicum55 (1988) pp. 11-17. Zbl0669.18005MR964315
  11. [11] Fernández Vilaboa J.M.: Grupes de Brauer y de Galois de un algebra de Hopf en una categoria cerrada, Alxebra42 (1985). Zbl0579.16004
  12. [12] Fischer-Palmquist J.: The Brauer group of a closed category, Proc. Amer. Math. Soc.50 (1975), pp. 61-67. Zbl0268.18006MR393195
  13. [13] Fischer-Palmquist J. & Palmquist P.H.: Morita contexts of enriched categories, Proc. Amer. Math. Soc.50 (1975), pp. 55-60. Zbl0268.18007MR419559
  14. [14] Gabber O.: Some theorems on Azumaya algebras, L. N. in Math. 844, Springer-Verlag (1988). Zbl0472.14013MR611868
  15. [15] González Rodríguez R.: La sucesión exacta ..., Ph. D. Thesis, Santiago de Compostela (1994). 
  16. [16] Heller A.: Some exact sequences in algebraic K-theory, Topology3 (1965), pp. 389-408. Zbl0161.01507MR179229
  17. [17] Kelly G.M.: Basic concepts of enriched category theories, London Math. Soc. L. N.64, Cambridge University Press (1982). Zbl0478.18005MR651714
  18. [18] Kelly G.M. & Laplaza M.L.: Coherence for compact closed categories, J. Pure Appl. Algebra19 (1980), pp. 193-213. Zbl0447.18005MR593254
  19. [19] Knus M.A. & Ojanguren M.: Théorie de Descente et Algèbres d'Azumaya, L. N. in Math389, Springer-Verlag (1974). Zbl0284.13002MR417149
  20. [20] Lindner H.: Morita equivalences of enriched categories, Cahiers Top. Géo. Diff.XV-4 (1974), pp. 377-397. Zbl0319.18006MR399209
  21. [21] Long F.W.: A generalization of Brauer group of graded algebras, Proc. London Math. Soc.29 (1974), pp. 237-256. Zbl0294.13003MR354753
  22. [22] Long F.W.: The Brauer group of dimodule algebras, J. Algebra30 (1974), pp. 559-601. Zbl0282.16007MR357473
  23. [23] López López M.P. & Villanueva Novoa E.: The Brauer group of the category (R, σ)-Mod, Proc. First Belgian-Spanish week on Algebra and Geometry (1988). 
  24. [24] Mitchell B.: Separable algebroids, Memoirs A.M.S. vol. 57 n. 333 (1985). Zbl0588.18007MR804210
  25. [25] Orzech M. & Small C.: The Brauer Group of a commutative Ring, L. N. in Pure and Appl. Math11, Marcel Dekker (1975). Zbl0302.13001MR457422
  26. [26] Pareigis B.: Non additive ring and module theory IV: the Brauer group of a symmetric monoidal category, L. N. in Math. 549, Springer-Verlag (1976), pp. 112-133. Zbl0362.18011MR498794
  27. [27] Raeburn I. & Taylor J.L.: The bigger Brauer group and étale cohomology, Pacific J. Math.119 (1985), pp. 445-463. Zbl0596.13006MR803128
  28. [28] Schack S.D.: Bimodules, the Brauer group, Morita equivalence and cohomology, J. Pure Appl. Algebra80 (1992), pp. 315-325. Zbl0765.16002MR1170717
  29. [29] Taylor J.L.: A bigger Brauer group, Pacific J. Math.103 (1982), pp. 163-203. Zbl0528.13007MR687968
  30. [30] Verschoren A.The Brauer group of a quasi-affine schema, L. N. in Math.917, Springer-Verlag (1982), pp. 260-278. Zbl0484.16002MR657435
  31. [31] Vitale E.M.: Monoidal categories for Morita theory, Cahiers Top. Géo. Diff. CatégoriquesXXXIII-4 (1992), pp. 331-343. Zbl0767.18009MR1197429
  32. [32] Vitale E.M.: Groupe de Brauer et distributeurs, talk at Journée de Catégories et Géométrie, Dunkerque (1995). 
  33. [33] Wall C.T.C.: Graded Brauer groups, J. Reine Angew. Math.213 (1964), pp.187-199. Zbl0125.01904MR167498
  34. [34] Wraith G.: Algebraic Theories, Aarhus UniversityL. N. Series 22 (1970). Zbl0249.18013MR262334
  35. [35] Zelinski D.: Brauer groups, L. N. in Pure and Appl. Math.26, Marcel Dekker (1977). MR444634

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.