Deformations of (bi)tensor categories
Cahiers de Topologie et Géométrie Différentielle Catégoriques (1998)
- Volume: 39, Issue: 3, page 163-180
- ISSN: 1245-530X
Access Full Article
topHow to cite
topCrane, L., and Yetter, D. N.. "Deformations of (bi)tensor categories." Cahiers de Topologie et Géométrie Différentielle Catégoriques 39.3 (1998): 163-180. <http://eudml.org/doc/91605>.
@article{Crane1998,
author = {Crane, L., Yetter, D. N.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {tensor categories; deformations; cohomology; bialgebra categories; topological quantum field theories},
language = {eng},
number = {3},
pages = {163-180},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Deformations of (bi)tensor categories},
url = {http://eudml.org/doc/91605},
volume = {39},
year = {1998},
}
TY - JOUR
AU - Crane, L.
AU - Yetter, D. N.
TI - Deformations of (bi)tensor categories
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1998
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 39
IS - 3
SP - 163
EP - 180
LA - eng
KW - tensor categories; deformations; cohomology; bialgebra categories; topological quantum field theories
UR - http://eudml.org/doc/91605
ER -
References
top- [1] D. Bar-Natan, On the Vassiliev knot invariants, Topology34 (2) (1995) 423ff. Zbl0898.57001MR1318886
- [2] J. Birman and X.-S. Lin, Vertex models, quantum groups and Vassiliev's knot invariants, preprint.
- [3] V. Chiari and A. Pressley, A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1994. Zbl0839.17009
- [4] L. Crane, Clock and category, is quantum gravity algebraic? JMP36 (1995), 6180ff. Zbl0848.57035MR1355904
- [5] L. Crane and Igor B. Frenkel, Four dimensional topological quantum field theory, Hopf categories, and the canonical bases, JMP35 (10) (1994), 5136ff. Zbl0892.57014MR1295461
- [6] L. Crane and D.N. Yetter, Examples of categorification, Cahiers de Top. et Geom. Diff. Cat. (to appear). Zbl0895.18004MR1615394
- [7] L. Crane and D.N. Yetter, On algebraic structures implicit in TQFTs, JKTR (to appear). Zbl0935.57025
- [8] R. Dijkgraf and E. Witten, Topological gauge theories and group cohomology, CMP129 (1990), 393-429. Zbl0703.58011MR1048699
- [9] Epstein, D.B.A., Functors between tensored categories, Invent. Math.1 (1966) 221-228. Zbl0146.02502MR213412
- [10] P. Etingof and D. Kazhdan, Quantization of Lie bialgebras I, e-print q-alg 9506005. Zbl0863.17008
- [11] M. Gerstenhaber and S. Schack, Algebras, bialgebras quantum groups and algebraic deformations, in Deformation Theory and Quantum Groups with Applications to Mathematical Physics (M. Gerstenhaber and J. Stasheff, eds.), Contemporary Mathematics134, AMS, Providence RI, 1992. Zbl0788.17009MR1187275
- [12] M. Kapranov and V. Voevodsky, 2-categories and Zamolodchikov's tetrahedral equation, preprint. MR1278735
- [13] V. Lunts and A. Rosenberg, Localization for Quantum groups, preprint. Zbl0928.16020MR1694897
- [14] G. Lusztig, Canonical bases in tensor products, Proc Nat Acad Sci89 (1992), 8177-8179. Zbl0760.17011MR1180036
- [15] G. Lusztig, Introduction to Quantum Groups, Birkhauser, Boston, 1993. Zbl0788.17010MR1227098
- [16] S. Maclane, Categories for the Working Mathematician, Springer Verlag, Berlin, 1971. Zbl0705.18001MR354798
- [17] J.P. Moussouris, Quantum models of spacetime based on recoupling theory, D.Phil. thesis, Oxford University, 1983.
- [18] N. Reshetiknin, Quantization of Lie bialgebras, Duke Math Journal Int Math Res Notices, 7, 143-151. Zbl0760.17012MR1174619
- [19] D.N. Yetter, Braided categories and Vassiliev invariants, II, unpublished lecture, Workshop on Discriminant Loci, Utrecht University, August 26, 1996.
- [20] D.N. Yetter, Framed tangles and a theorem of Deligne on braided deformations of Tannakian categories, in Deformation Theory and Quantum Groups with Applications to Mathematical Physics (M. Gerstenhaber and J. Stasheff, eds.), Contemporary Mathematics134, AMS, Providence RI, 1992. Zbl0812.18005MR1187296
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.