Stone spaces of more partially ordered sets

David Elias

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1999)

  • Volume: 40, Issue: 3, page 233-240
  • ISSN: 1245-530X

How to cite

top

Elias, David. "Stone spaces of more partially ordered sets." Cahiers de Topologie et Géométrie Différentielle Catégoriques 40.3 (1999): 233-240. <http://eudml.org/doc/91621>.

@article{Elias1999,
author = {Elias, David},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {Stone space; Doctor ideal; Stone duality; Frink ideal; topological representation; compact-open sets; dual equivalence between categories},
language = {eng},
number = {3},
pages = {233-240},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Stone spaces of more partially ordered sets},
url = {http://eudml.org/doc/91621},
volume = {40},
year = {1999},
}

TY - JOUR
AU - Elias, David
TI - Stone spaces of more partially ordered sets
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1999
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 40
IS - 3
SP - 233
EP - 240
LA - eng
KW - Stone space; Doctor ideal; Stone duality; Frink ideal; topological representation; compact-open sets; dual equivalence between categories
UR - http://eudml.org/doc/91621
ER -

References

top
  1. 1 P. Crawley and R. Dilworth, Algebraic Theory of Lattices, Prentice Hall1973. Zbl0494.06001
  2. 2 E. David, Complete Lattices and Topological Spaces, Thesis, University of London, 1978. 
  3. 3 E. David and M. Erné, Ideal, Completion and Stone Representation..., Top. and Appl.44 (1992), 95-113. Zbl0768.06003MR1173247
  4. 4 R. Derderian, Residuated Mappings, Pac. J Math.20 (1967), 35-44. Zbl0145.01602MR210625
  5. 5 H.P. Doctor, Extensions of a poset, Thesis, University of Hamilton, 1967. 
  6. 6 M. Erné, Adjunctions and Standard Constructions for Posets (G.Eigenthaler et al. Eds.), Proc. Klagenfurt Conference 1982 (Teubner, Stuttgart, 1983), 77-106. Zbl0533.06001MR721648
  7. 7 I. Fleischer, Even every join extension solves a universal problem, J Australian Math. Soc.21 (1976, Series A), 220-223. Zbl0326.06001MR396349
  8. 8 P.T. Johnstone, Stone Spaces, Cambridge University Press1982. Zbl0499.54001MR698074
  9. 9 J. Schmidt, Each Join Completion of a Poset..., JAustralian Math. Soc.19 (1974), 406-413. Zbl0304.06003MR351927

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.