The syntax of coherence

Noson S. Yanofsky

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2000)

  • Volume: 41, Issue: 4, page 255-304
  • ISSN: 1245-530X

How to cite

top

Yanofsky, Noson S.. "The syntax of coherence." Cahiers de Topologie et Géométrie Différentielle Catégoriques 41.4 (2000): 255-304. <http://eudml.org/doc/91637>.

@article{Yanofsky2000,
author = {Yanofsky, Noson S.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {coherence; functorial semantics; algebraic theories; 2-categories},
language = {eng},
number = {4},
pages = {255-304},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {The syntax of coherence},
url = {http://eudml.org/doc/91637},
volume = {41},
year = {2000},
}

TY - JOUR
AU - Yanofsky, Noson S.
TI - The syntax of coherence
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2000
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 41
IS - 4
SP - 255
EP - 304
LA - eng
KW - coherence; functorial semantics; algebraic theories; 2-categories
UR - http://eudml.org/doc/91637
ER -

References

top
  1. [1] Michael Barr and Charles Wells.Category Theory for Computing Science. Prentice Hall (1990). Zbl0714.18001MR1094561
  2. [2] R. Blackwell, G.M. Kelly and A.J. Power.Two-dimensional monad theory. Journal of Pure and Applied Algebra59 (1989) 1-41. Zbl0675.18006MR1007911
  3. [3] F. Borceux and BrianDay. Universal algebra in a closed category. Journal of Pure and Applied Algebra16 (1980) 133-147. Zbl0426.18004MR556156
  4. [4] D. Bourn.Natural anadeses and catadeses. Cahiers Topo. et Geom. Diff. Vol XIV-4(1973) 1 - 45. Zbl0323.18003MR354808
  5. [5] M. Bunge.Bifibration induced adjoint pairs. Reports of the Midwest Category Seminar, V (Zurich, 1970) Lecture Notes in Math Vol 195. 70 - 122. Zbl0224.18009MR292904
  6. [6] M. Bunge.Coherent extensions and relational algebras. Trans. Amer. Math. Soc.197 (1974) 355 - 390. Zbl0358.18004MR344305
  7. [7] P. Freyd.Algebra valued functors in general and tensor products in particular. Colloquium MathematicumXIV (1996) 89-106. Zbl0144.01003MR195920
  8. [8] John W. Gray.Quasi-Kan extensions for 2-categories. Bulletin of the A.M.S. Vol. 80, Number 1, January (1974) 142-147. Zbl0358.18005MR340369
  9. [9] John W. Gray.Formal Category Theory: Adjointness for 2-categories. Springer-VerlagLNM391 (1974). Zbl0285.18006MR371990
  10. [10] John W. Gray.2-Algebraic theories and triples, Cahiers Topologie Geom. DifferentielleXIV (1974), 178 - 180. 
  11. [11] John W. Gray.Coherence for the Tensor Product of 2-Categories, and Braid Groups. Algebra, topology, and category theory (a collection of papers in honor of Samuel Eilenberg), Academic Press, New York, 1976. 63-76. Zbl0391.18007MR412252
  12. [12] A. Joyal and R. Street.Braided tensor categories,revised. Macquarie Math. Report no 86081. 
  13. [13] A. Joyal and R. Street.Braided tensor categories. Adv. Math.102 (1993) 20-78. Zbl0817.18007MR1250465
  14. [14] C. Kassel.Quantum Groups, Vol 155 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. Zbl0808.17003MR1321145
  15. [15] F.W. Lawvere.Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. U.S.A.50 (1963) 869-872. Zbl0119.25901MR158921
  16. [16] F.W. Lawvere.Some Algebraic Problems in the Context of Functorial Semantics of Algebraic Theories, Springer Lecture Notes in Mathematics No. 61, Springer-Verlag (1968), 41-61. Zbl0204.33802MR231882
  17. [17] F.W. Lawvere.Ordinal Sums and Equational Doctrines, Springer Lecture Notes in Mathematics No. 80, Springer-Verlag (1969), 141-155. Zbl0165.03204MR240158
  18. [18] M. Markl.Models for operads, Comm. Algebra24 (1996), no.41471-1500. Zbl0848.18003MR1380606
  19. [19] S. MacLane.Naural associativity and commutativity. Rice Univ. Studies49 (1963) 28-46. Zbl0244.18008MR170925
  20. [20] J.L. MacDonald and A. Stone.Soft Adjunction between 2-categories. Journal of Pure and Applied Algebra60 (1989) 155-203. Zbl0686.18003MR1020715
  21. [21] R. Seely.Modeling computations: a 2-categorical approach. Proc. Symposium on Logic in Computer Science, 1987 (Computer Society of the IEEE, 1987) 65-71. 
  22. [22] R. Street.Two constructions on lax functors. Cahiers Topo. et Geom. Diff. Vol XIII - 3 (1972) 217 - 264. Zbl0252.18008MR347936
  23. [23] U. Tillmann.Discrete models for the category of Riemann surfaces. Math. Proc. Camb. Phil. Soc.121,39 (1997). Zbl0905.55011MR1418359
  24. [24] A. Voronov.The Swiss-Cheese Operad. Preprint available as math.QA/980737. July 1998. MR1718089
  25. [25] E.G. Wagner.Algebraic semantics. Handbook of logic in computer science, vol 3. Pg 323 - 393 (1994). MR1365751
  26. [26] N.S. Yanofsky.Obstructions to Coherence: Natural Noncoherent Associativity and Tensor Functors Thesis ofCity University of New York (1996). 
  27. [27] N.S. Yanofsky.Obstructions to Coherence: Natural Noncoherent Associativity. Accepted for publication Journal of Pure and Applied Algebra. Available in Quantum Algebra http://xxx.lanl.gov/QA/9804106. Zbl0973.18004
  28. [28] N.S. Yanofsky.Natural Noncoherent Commutativity. in preparation. Zbl0973.18004
  29. [29] N.S. Yanofsky.Relative Coherence Theory. work in progress. Zbl0989.18005
  30. [30] D.A. Yetter, Quantum groups and representations of monoidal categories, Math. Proc. Camb. Phil. Soc. (1990), 108, 261-290. Zbl0712.17014MR1074714

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.