The syntax of coherence
Cahiers de Topologie et Géométrie Différentielle Catégoriques (2000)
- Volume: 41, Issue: 4, page 255-304
- ISSN: 1245-530X
Access Full Article
topHow to cite
topYanofsky, Noson S.. "The syntax of coherence." Cahiers de Topologie et Géométrie Différentielle Catégoriques 41.4 (2000): 255-304. <http://eudml.org/doc/91637>.
@article{Yanofsky2000,
author = {Yanofsky, Noson S.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {coherence; functorial semantics; algebraic theories; 2-categories},
language = {eng},
number = {4},
pages = {255-304},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {The syntax of coherence},
url = {http://eudml.org/doc/91637},
volume = {41},
year = {2000},
}
TY - JOUR
AU - Yanofsky, Noson S.
TI - The syntax of coherence
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2000
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 41
IS - 4
SP - 255
EP - 304
LA - eng
KW - coherence; functorial semantics; algebraic theories; 2-categories
UR - http://eudml.org/doc/91637
ER -
References
top- [1] Michael Barr and Charles Wells.Category Theory for Computing Science. Prentice Hall (1990). Zbl0714.18001MR1094561
- [2] R. Blackwell, G.M. Kelly and A.J. Power.Two-dimensional monad theory. Journal of Pure and Applied Algebra59 (1989) 1-41. Zbl0675.18006MR1007911
- [3] F. Borceux and BrianDay. Universal algebra in a closed category. Journal of Pure and Applied Algebra16 (1980) 133-147. Zbl0426.18004MR556156
- [4] D. Bourn.Natural anadeses and catadeses. Cahiers Topo. et Geom. Diff. Vol XIV-4(1973) 1 - 45. Zbl0323.18003MR354808
- [5] M. Bunge.Bifibration induced adjoint pairs. Reports of the Midwest Category Seminar, V (Zurich, 1970) Lecture Notes in Math Vol 195. 70 - 122. Zbl0224.18009MR292904
- [6] M. Bunge.Coherent extensions and relational algebras. Trans. Amer. Math. Soc.197 (1974) 355 - 390. Zbl0358.18004MR344305
- [7] P. Freyd.Algebra valued functors in general and tensor products in particular. Colloquium MathematicumXIV (1996) 89-106. Zbl0144.01003MR195920
- [8] John W. Gray.Quasi-Kan extensions for 2-categories. Bulletin of the A.M.S. Vol. 80, Number 1, January (1974) 142-147. Zbl0358.18005MR340369
- [9] John W. Gray.Formal Category Theory: Adjointness for 2-categories. Springer-VerlagLNM391 (1974). Zbl0285.18006MR371990
- [10] John W. Gray.2-Algebraic theories and triples, Cahiers Topologie Geom. DifferentielleXIV (1974), 178 - 180.
- [11] John W. Gray.Coherence for the Tensor Product of 2-Categories, and Braid Groups. Algebra, topology, and category theory (a collection of papers in honor of Samuel Eilenberg), Academic Press, New York, 1976. 63-76. Zbl0391.18007MR412252
- [12] A. Joyal and R. Street.Braided tensor categories,revised. Macquarie Math. Report no 86081.
- [13] A. Joyal and R. Street.Braided tensor categories. Adv. Math.102 (1993) 20-78. Zbl0817.18007MR1250465
- [14] C. Kassel.Quantum Groups, Vol 155 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. Zbl0808.17003MR1321145
- [15] F.W. Lawvere.Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. U.S.A.50 (1963) 869-872. Zbl0119.25901MR158921
- [16] F.W. Lawvere.Some Algebraic Problems in the Context of Functorial Semantics of Algebraic Theories, Springer Lecture Notes in Mathematics No. 61, Springer-Verlag (1968), 41-61. Zbl0204.33802MR231882
- [17] F.W. Lawvere.Ordinal Sums and Equational Doctrines, Springer Lecture Notes in Mathematics No. 80, Springer-Verlag (1969), 141-155. Zbl0165.03204MR240158
- [18] M. Markl.Models for operads, Comm. Algebra24 (1996), no.41471-1500. Zbl0848.18003MR1380606
- [19] S. MacLane.Naural associativity and commutativity. Rice Univ. Studies49 (1963) 28-46. Zbl0244.18008MR170925
- [20] J.L. MacDonald and A. Stone.Soft Adjunction between 2-categories. Journal of Pure and Applied Algebra60 (1989) 155-203. Zbl0686.18003MR1020715
- [21] R. Seely.Modeling computations: a 2-categorical approach. Proc. Symposium on Logic in Computer Science, 1987 (Computer Society of the IEEE, 1987) 65-71.
- [22] R. Street.Two constructions on lax functors. Cahiers Topo. et Geom. Diff. Vol XIII - 3 (1972) 217 - 264. Zbl0252.18008MR347936
- [23] U. Tillmann.Discrete models for the category of Riemann surfaces. Math. Proc. Camb. Phil. Soc.121,39 (1997). Zbl0905.55011MR1418359
- [24] A. Voronov.The Swiss-Cheese Operad. Preprint available as math.QA/980737. July 1998. MR1718089
- [25] E.G. Wagner.Algebraic semantics. Handbook of logic in computer science, vol 3. Pg 323 - 393 (1994). MR1365751
- [26] N.S. Yanofsky.Obstructions to Coherence: Natural Noncoherent Associativity and Tensor Functors Thesis ofCity University of New York (1996).
- [27] N.S. Yanofsky.Obstructions to Coherence: Natural Noncoherent Associativity. Accepted for publication Journal of Pure and Applied Algebra. Available in Quantum Algebra http://xxx.lanl.gov/QA/9804106. Zbl0973.18004
- [28] N.S. Yanofsky.Natural Noncoherent Commutativity. in preparation. Zbl0973.18004
- [29] N.S. Yanofsky.Relative Coherence Theory. work in progress. Zbl0989.18005
- [30] D.A. Yetter, Quantum groups and representations of monoidal categories, Math. Proc. Camb. Phil. Soc. (1990), 108, 261-290. Zbl0712.17014MR1074714
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.