The cartesian closed hull of the category of approach spaces

E. Lowen-Colebunders; R. Lowen; M. Nauwelaerts

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2001)

  • Volume: 42, Issue: 4, page 242-260
  • ISSN: 1245-530X

How to cite

top

Lowen-Colebunders, E., Lowen, R., and Nauwelaerts, M.. "The cartesian closed hull of the category of approach spaces." Cahiers de Topologie et Géométrie Différentielle Catégoriques 42.4 (2001): 242-260. <http://eudml.org/doc/91648>.

@article{Lowen2001,
author = {Lowen-Colebunders, E., Lowen, R., Nauwelaerts, M.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {Cartesian closed topological hull; approach spaces},
language = {eng},
number = {4},
pages = {242-260},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {The cartesian closed hull of the category of approach spaces},
url = {http://eudml.org/doc/91648},
volume = {42},
year = {2001},
}

TY - JOUR
AU - Lowen-Colebunders, E.
AU - Lowen, R.
AU - Nauwelaerts, M.
TI - The cartesian closed hull of the category of approach spaces
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2001
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 42
IS - 4
SP - 242
EP - 260
LA - eng
KW - Cartesian closed topological hull; approach spaces
UR - http://eudml.org/doc/91648
ER -

References

top
  1. [1] J. Adámek, H. Herrlich and G.E. Strecker, Abstract and concrete categories, Wiley, New York et al., (1990). Zbl0695.18001MR1051419
  2. [2] J. Adámek and J. Reiterman, Cartesian closed hull for metric spaces, Comment. Math. Univ. Carolinae31,1(1990), 1-6. Zbl0702.18002MR1056163
  3. [3] Ph. Antoine, Étude élémentaire d'ensembles structurés, Bull. Soc. Math. BelgeXVIII2 et 4 (1966). Zbl0192.10105
  4. [4] G. Bourdaud, Espaces d'Antoine et semi-espaces d'Antoine, Cahiers Topol. Géom. Diff. Cat.16 (1975), 107-133. Zbl0315.54005MR394529
  5. [5] G. Bourdaud, Some cartesian closed topological categories of convergence spaces, in: E. Binz and H. Herrlich (eds.), Categorical Topology (Proc. Mannheim 1975), Lecture Notes Math.540, Springer, Berlin et al. (1976), 93-108. Zbl0332.54004MR493924
  6. [6] H. Herrlich, Topological improvements of categories of structured sets, Topology Appl.27 (1987), 145-155. Zbl0632.54008MR911688
  7. [7] H. Herrlich and L.D. Nel, Cartesian closed topological hulls, Proc. Amer. Math. Soc.62 (1977), 215-222. Zbl0361.18006MR476831
  8. [8] E. Lowen and R. Lowen, A quasitopos containing CONV and MET as full subcategories, Intern. J. Math. & Math. Sci.11 (1988), 417-438. Zbl0672.54003MR947271
  9. [9] E. Lowen and R. Lowen, Topological quasitopos hulls of categories containing topological and metric objects, Cahiers Topol. Géom. Diff. Cat.30,3 (1989), 213-228. Zbl0706.18002MR1029625
  10. [10] R. Lowen, Approach Spaces: The missing link in the Topology-Uniformity-Metric Triad, Oxford Mathematical Monographs, Oxford University Press (1997). Zbl0891.54001MR1472024
  11. [11] A. Machado, Espaces d'Antoine et pseudo-topologies, Cahiers Topol. Géom. Diff. Cat.14-3 (1973), 309-327. Zbl0276.54001MR345054
  12. [12] F. Schwarz and S. Weck-Schwarz, Internal Desciription of Hulls: A Unifying Approach, Category Theory at Work, H. Herrlich and H.-E. Porst (eds), Heldermann VerlagBerlin (1991), 35-45. Zbl0767.18006MR1147917

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.