On a generalized small-object argument for the injective subcategory problem

J. Adámek; H. Herrlich; J. Rosický; W. Tholen

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2002)

  • Volume: 43, Issue: 2, page 83-106
  • ISSN: 1245-530X

How to cite

top

Adámek, J., et al. "On a generalized small-object argument for the injective subcategory problem." Cahiers de Topologie et Géométrie Différentielle Catégoriques 43.2 (2002): 83-106. <http://eudml.org/doc/91656>.

@article{Adámek2002,
author = {Adámek, J., Herrlich, H., Rosický, J., Tholen, W.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {reflective category; locally presentable category; topological category; injective object; factorization system; locally ranked category},
language = {eng},
number = {2},
pages = {83-106},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {On a generalized small-object argument for the injective subcategory problem},
url = {http://eudml.org/doc/91656},
volume = {43},
year = {2002},
}

TY - JOUR
AU - Adámek, J.
AU - Herrlich, H.
AU - Rosický, J.
AU - Tholen, W.
TI - On a generalized small-object argument for the injective subcategory problem
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2002
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 43
IS - 2
SP - 83
EP - 106
LA - eng
KW - reflective category; locally presentable category; topological category; injective object; factorization system; locally ranked category
UR - http://eudml.org/doc/91656
ER -

References

top
  1. [1] J. Adámek, H. Herrlich and G.E. Strecker: Abstract and Concrete Categories, John Wiley, New York1990. Zbl0695.18001MR1051419
  2. [2] J. Adámek, H. Herrlich, J. Rosický and W. Tholen: Injective hulls are not natural, to appear in Alg. Univ. Zbl1061.18010MR1967087
  3. [3] J. Adámek and J. Rosicky: Locally presentable and accessible categories, Cambridge University Press, 1994. Zbl0795.18007MR1294136
  4. [4] T. Beke: Sheafifiable homotopy model categories, Math. Proc. Cambridge Philos. Soc.129 (2000), 447-475. Zbl0964.55018MR1780498
  5. [5] C. Cassidy, M. Hebert, G.M. Kelly: Reflective subcategories, localizations and factorization systems, J. Austral. Math. Soc.38 (1985), 287-329. Zbl0573.18002MR779198
  6. [6] P. Gabriel and F. Ulmer: Lokal Präsentiebare Kategorien, Springer Lecture Notes Math. 221, Springer-VerlagBerlin, 1971. Zbl0225.18004MR327863
  7. [7] P. Gabriel and M. Zisman: Calculus of fractions and homotopy theory, Springer-VerlagBerlin, 1967. Zbl0186.56802MR210125
  8. [8] M.D. Hirschhorn: Localizations of model categories, preprint 1998, http://www.math.mit.edu/psh. 
  9. [9] H. Herrlich: Almost reflective subcategories of Top, Topology Appl.49 (1993), 251-264. Zbl0805.54016MR1208677
  10. [10] M. Kelly: A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on, Bull. Austral. Math. Soc.22 (1980), 1-84. Zbl0437.18004MR589937
  11. [11] V. Koubek and J. Reiterman: Categorical constructions of free algebras, colimits and completions of partial algebras, J. Pure Appl. Algebra14 (1979), 195-231. Zbl0403.18002MR524187
  12. [12] D. Quillen: Homotopical algebra, Lecture Notes Math. 43, Springer-Verlag, Berlin1967. Zbl0168.20903MR223432
  13. [13] J. Reiterman: Categorical algebraic constructions, Charles University dissertation (in Czech), Prague1976. 
  14. [14] C.M. Ringel: Diagonalisierungspaare I., Math. Z.117 (1970), 240-266. Zbl0206.30002MR272864

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.