Professor Rosický sexagenarian

Jiří Adámek; Jan Paseka

Mathematica Bohemica (2007)

  • Volume: 132, Issue: 4, page 437-443
  • ISSN: 0862-7959

How to cite

top

Adámek, Jiří, and Paseka, Jan. "Professor Rosický sexagenarian." Mathematica Bohemica 132.4 (2007): 437-443. <http://eudml.org/doc/32593>.

@article{Adámek2007,
author = {Adámek, Jiří, Paseka, Jan},
journal = {Mathematica Bohemica},
language = {eng},
number = {4},
pages = {437-443},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Professor Rosický sexagenarian},
url = {http://eudml.org/doc/32593},
volume = {132},
year = {2007},
}

TY - JOUR
AU - Adámek, Jiří
AU - Paseka, Jan
TI - Professor Rosický sexagenarian
JO - Mathematica Bohemica
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 132
IS - 4
SP - 437
EP - 443
LA - eng
UR - http://eudml.org/doc/32593
ER -

References

top
  1. Algebra, Purkyně University, Brno, 1981, text-book. (Czech) (1981, text-book) 
  2. Universální algebra a teorie svazů, SPN, Praha, 1988, text-book (with L. Bican). (Czech) 
  3. Locally presentable and accessible categories, Cambridge University Press, Cambridge, 1994, monograph. Zbl0795.18007MR1294136
  4. A note on topology compatible with the ordering, Arch. Math., Brno 5 (1969), 19–24. (1969) Zbl0235.06003MR0282344
  5. On the existence of graphs with a certain ordering of vertices, Arch. Math., Brno 6 (1970), 89–113. (1970) MR0294162
  6. Relative Komplemente im Verband der T 1 -Topologien, Publ. Fac. Sci. Univ, Brno 518, 1970, pp. 445–460. (Brno 518, 1970) MR0289382
  7. Topologies compatible with the ordering, Publ. Fac. Sci. Univ, Brno, 1971, pp. 9–23. (Brno, 1971) MR0326682
  8. On a characterization of the lattice of m -ideals of an ordered set, Arch. Math., Brno 8 (1972), 137–142. (1972) MR0335375
  9. Full embeddings with a given restriction, Comment. Math. Univ. Carol. 14 (1973), 519–540. (1973) Zbl0267.18007MR0327866
  10. Strong embeddings into categories of algebras over a monad I, Comment. Math. Univ. Carol. 14 (1973), 699–718. (1973) Zbl0269.18002MR0330257
  11. Realizations of topologies by set-systems, Coll. Math. Soc. J. Bolyai 8. Topics in Topology, Keszthely, 1972, pp. 535–553. (1972) MR0355945
  12. Embeddings of lattices in the lattice of topologies, Arch. Math., Brno 9 (1973), 49–56. (1973) MR0372803
  13. Strong embeddings into categories of algebras over monad II, Comment. Math. Univ. Carol. 15 (1974), 131–147. (1974) MR0342583
  14. Remarks on topologies uniquely determined by their continuous self maps, Czech. Math. J. 24 (1974), 373–377. (1974) Zbl0331.54003MR0348697
  15. 10.4064/cm-31-2-179-188, Colloq. Math. 31 (1974), 179–188. (1974) Zbl0289.54024MR0365446DOI10.4064/cm-31-2-179-188
  16. Preservation of topological properties by automorphisms of the lattice of topologies, Publ. Fac. Sci. Univ, Brno, 1974, pp. 59–62. (Brno, 1974) Zbl0376.54002MR0397639
  17. Sublattices of the lattice of topologies, Acta Fac. Rer. Natur. Univ. Comenian., Math, 1975, pp. 39–41. (1975) Zbl0292.54004MR0353230
  18. On extensions of full embeddings and binding categories, Comment. Math. Univ. Carol. 15 (1974), 631–653. (1974) Zbl0291.18005MR0354805
  19. Codensity and binding categories, Comment. Math. Univ. Carol. 16 (1975), 515–529. (1975) Zbl0314.18003MR0376800
  20. Concerning binding categories, Czech. Math. J. 25 (1975), 515–529. (1975) Zbl0335.18004MR0387375
  21. Modular, distributive and simple intervals of the lattice of topologies, Arch. Math., Brno 11 (1975), 105–114. (1975) MR0410621
  22. Topologies compatible with the ordering, Publ. Fac. Sci. Univ, Brno, 1974, pp. 39–42. (Brno, 1974) Zbl0293.06010MR0392739
  23. One example concerning testing categories, Comment. Math. Univ. Carol. 18 (1977), 71–75. (1977) Zbl0355.18007MR0432730
  24. One obstruction for closedness, Comment. Math. Univ. Carol. 18 (1977), 311–318. (1977) Zbl0359.18011MR0470025
  25. Liftings of functors in topological situations, Proc. 4th Prague Toposym, Praha, 1977, pp. 394–400. (Praha, 1977) Zbl0372.54004MR0482623
  26. 2-categorical tools in the theory of concrete categories, Abstr. 5th Winter School on Abstract Analysis, Praha, 1977, pp. 95–99. (Praha, 1977) 
  27. Extensions of functors and their applications, Cah. Topologie Géom. Différ. 19 (1978), 179–219. (1978) Zbl0393.18002MR0528346
  28. Categories of models of infinitary Horn theories, Arch. Math., Brno (1978), 219–226. (1978) Zbl0404.18003MR0512765
  29. An algebraic description of ordinals, Diagrammes 2 (1979). (1979) Zbl0515.03028
  30. Equational categories, Cah. Topologie Géom. Différ. 22 (1981), 85–96. (1981) Zbl0463.18002MR0609163
  31. On algebraic categories, Coll. Math. Soc. J. Bolyai 29, Universal Algebra, Budapest, 1981, pp. 662–690. (Budapest, 1981) 
  32. Implicit operations on finite algebras, Coll. Math. Soc. J. Bolyai 28, Budapest, 1981, pp. 653–668. (Budapest, 1981) Zbl0478.08002MR0648638
  33. 10.1016/0022-4049(81)90105-5, J. Pure Appl. Algebra 22 (1981), 309–339. (1981) Zbl0475.18001MR0629337DOI10.1016/0022-4049(81)90105-5
  34. A note on algebraic categories, Arch. Math., Brno 18 (1982), 163–168. (1982) Zbl0511.18007MR0682104
  35. Does exp ( X ) exist for a proper class X ? Abstr, 8th Winter School on Abstract Anal, Praha, 1982, pp. 138–142. (Praha, 1982) 
  36. Categories of models of languages L κ λ ( μ ) , Abstr. 9th Winter School on Abstract Anal, Praha, 1982, pp. 153–157. (Praha, 1982) 
  37. Categories of models, Seminarberichte Fernuniversität Hagen 19, 1984, pp. 377–413. Zbl0563.03017
  38. Abstract tangent functors, Diagrammes 12 (1984), 1–11. (1984) Zbl0561.18008MR0800500
  39. 10.1007/BF01236811, Algebra Univ. 20 (1985), 123–126. (1985) Zbl0559.08002MR0790910DOI10.1007/BF01236811
  40. T 1 -locales, Math. Proc. Camb. Phil. Soc. 98 (1985), 81–86. (1985) MR0789721
  41. 10.1016/0022-4049(86)90039-3, J. Pure Appl. Algebra 40 (1986), 177–189. (1986) Zbl0587.18001MR0830320DOI10.1016/0022-4049(86)90039-3
  42. A note on exponentiation in regular locales, Arch. Math., Brno 22 (1986), 157–158. (1986) Zbl0609.54009MR0868131
  43. 10.1007/BF01951002, Acta Math. Hung. 49 (1987), 391–395. (1987) Zbl0623.06006MR0891051DOI10.1007/BF01951002
  44. A categorical characterization of sets among classes, Arch. Math., Brno 23 (1987), 117–121. (1987) Zbl0632.18003MR0930328
  45. 10.1090/S0002-9939-1988-0947643-9, Proc. Amer. Math. Soc. 103 (1988), 710–712. (1988) Zbl0675.18002MR0947643DOI10.1090/S0002-9939-1988-0947643-9
  46. Essentially equational categories, Cah. Topologie Géom. Différ. Catég. 29 (1988), 175–192. (1988) Zbl0659.18010MR0975371
  47. Are all limit closed subcategories of locally presentable categories reflective, Categorical Algebra and its Applications, Lect. Notes Math. 1348, 1988, pp. 1–18. (1988) Zbl0668.18004MR0975956
  48. Orthogonal and prereflective subcategories, Cah. Topologie Géom. Différ. Catég. 29 (1988), 203–216. (1988) Zbl0669.18001MR0975373
  49. Remarks on localic groups, Categorical Algebra and its Applications, Lect. Notes Math, 1348, 1988, pp. 154–172. (1348, 1988) MR0975968
  50. Reflections in locally presentable categories, Arch. Math., Brno 25 (1989), 89–94. (1989) Zbl0742.18002MR1189203
  51. 10.1007/BF01194392, Arch. Math. (Basel) 52 (1989), 284–288. (1989) Zbl0665.18004MR0989884DOI10.1007/BF01194392
  52. Representability of concrete categories by non-constant morphism, Arch. Math., Brno 25 (1989), 115–118. (1989) MR1189207
  53. Quantales and C * -algebras, J. London Math. Soc. 40 (1989), 398–404. (1989) Zbl0705.06009MR1053610
  54. Generating the monadic theory of C * -algebras and related categories, Proc. Categ. Top. and Appl, World Scientific, Singapore, 1989, pp. 163–180. (1989) 
  55. 10.1090/S0002-9939-1990-0987614-9, Proc. Amer. Math. Soc. 108 (1990), 605–612. (1990) Zbl0694.18006MR0987614DOI10.1090/S0002-9939-1990-0987614-9
  56. Elementary categories, Arch. Math. (Basel) 52 (1989), 248–288. (1989) Zbl0665.18004MR1006723
  57. Multiplicative lattices and C * -algebras, Cah. Topologie Géom. Différ. Catég. 30 (1989), 95–110. (1989) Zbl0676.46047MR1004734
  58. 10.1007/BF01182450, Algebra Univ. 27 (1990), 153–170. (1990) Zbl0701.18003MR1037859DOI10.1007/BF01182450
  59. 10.1016/0012-365X(92)90667-5, Discrete Math. 108 (1992), 133–137. (1992) Zbl0767.18002MR1189836DOI10.1016/0012-365X(92)90667-5
  60. 10.1090/S0002-9947-1993-1085935-2, Trans. Amer. Math. Soc. 336 (1993), 785–804. (1993) Zbl0789.18003MR1085935DOI10.1090/S0002-9947-1993-1085935-2
  61. What are locally generated categories? Proc, Proc. Categ. Conf. Como 1990, Lect. Notes Math, 1488, 1991, pp. 14–19. (1488, 1991) MR1173001
  62. 10.1007/BF01196099, Algebra Univ. 30 (1993), 275–284. (1993) Zbl0817.46057MR1223636DOI10.1007/BF01196099
  63. Characterizing spatial quantales, Algebra Univ. 34 (1995), 175–178. (1995) Zbl0837.46055MR1348946
  64. 10.1016/0022-4049(94)90023-X, J. Pure Appl. Algebra 92 (1994), 185–190. (1994) Zbl0798.18004MR1261125DOI10.1016/0022-4049(94)90023-X
  65. 10.1016/0022-4049(94)00035-H, J. Pure Appl. Algebra 98 (1995), 189–208. (1995) Zbl0817.18004MR1319969DOI10.1016/0022-4049(94)00035-H
  66. 10.1007/BF00878503, Appl. Categ. Struct. 2 (1994), 71–76. (1994) Zbl0801.18004MR1283214DOI10.1007/BF00878503
  67. Weakly locally presentable categories, Cah. Topologie Géom. Différ. Catég. 35 (1994), 179–186. (1994) Zbl0809.18001MR1295116
  68. 10.1017/S0960129500000773, Math. Struct. Comput. Sci. 5 (1995), 315–322. (1995) Zbl0838.18001MR1361603DOI10.1017/S0960129500000773
  69. Finitary sketches, J. Symb. Log. 62 (1997), 699–707. (1997) Zbl0885.18001MR1472119
  70. 10.1016/0022-4049(94)00152-9, J. Pure Appl. Algebra 105 (1995), 225–232. (1995) Zbl0852.18003MR1367868DOI10.1016/0022-4049(94)00152-9
  71. 10.1023/A:1011252012003, Appl. Categ. Struct. 9 (2001), 329–338. (2001) Zbl0991.18008MR1847304DOI10.1023/A:1011252012003
  72. 10.1007/BF00122254, Appl. Categ. Struct. 4 (1996), 227–240. (1996) Zbl0855.18005MR1406100DOI10.1007/BF00122254
  73. A topological Banach space model of linear logic, Categorical Topology, E. Giuli (ed.), Kluwer, 1996, pp. 155–162. (Kluwer, 1996) Zbl0891.46046MR1412582
  74. An algebraic description of locally multipresentable categories, Theory Appl. Categ. 2 (1996), 40–54. (1996) Zbl0853.18006MR1399320
  75. 10.2307/2275577, J. Symb. Log. 62 (1997), 891–901. (1997) Zbl0891.03034MR1472128DOI10.2307/2275577
  76. 10.1016/S0022-4049(96)00159-4, J. Pure Appl. Algebra 116 (1997), 3–23. (1997) Zbl0867.18005MR1437610DOI10.1016/S0022-4049(96)00159-4
  77. 10.1006/jabr.1997.7051, J. Algebra 195 (1997), 367–386. (1997) Zbl0894.06005MR1469630DOI10.1006/jabr.1997.7051
  78. 10.1016/S0022-4049(98)00146-7, J. Pure Appl. Algebra 142 (1999), 261–270. (1999) Zbl0937.18003MR1721095DOI10.1016/S0022-4049(98)00146-7
  79. 10.1016/S0022-4049(98)00155-8, J. Pure Appl. Algebra 148 (2000), 275–284. (2000) Zbl0948.18009MR1758734DOI10.1016/S0022-4049(98)00155-8
  80. More on injectivity in locally presentable categories, Theory Appl. Categ. 10 (2002), 148–161. (2002) Zbl0993.18006MR1895512
  81. A theory of enriched sketches, Theory Appl. Categ. 4 (1998), 47–72. (1998) Zbl0981.18006MR1624638
  82. 10.1016/S0022-4049(01)00015-9, J. Pure Appl. Algebra 163 (2001), 1–17. (2001) Zbl0986.18007MR1847373DOI10.1016/S0022-4049(01)00015-9
  83. 10.1007/s000120050111, Algebra Univ. 41 (1999), 213–227. (1999) Zbl0970.18006MR1699341DOI10.1007/s000120050111
  84. 10.1016/S0022-4049(01)00016-0, J. Pure Appl. Algebra 161 (2001), 65–90. (2001) Zbl0982.18006MR1834079DOI10.1016/S0022-4049(01)00016-0
  85. 10.1007/s00012-002-8174-3, Algebra Univ. 47 (2002), 55–64. (2002) Zbl1061.18007MR1901732DOI10.1007/s00012-002-8174-3
  86. 10.1016/S0304-3975(01)00189-X, Theory Comp. Sci. 275 (2002), 427–462. (2002) Zbl1026.68031MR1902100DOI10.1016/S0304-3975(01)00189-X
  87. Comparing coequalizer and exact completions, Theory Appl. Categ. 6 (1999), 77–82. (1999) Zbl0941.18004MR1732464
  88. 10.1007/s000120050199, Algebra Univ. 45 (2001), 23–33. (2001) Zbl1044.18001MR1809854DOI10.1007/s000120050199
  89. Continuous categories revisited, Theory Appl. Categ. 11 (2003), 252–282. (2003) Zbl1018.18003MR1988399
  90. On sifted colimits and generalized varieties, Theory Appl. Categ. 8 (2001), 33–53. (2001) Zbl0971.18004MR1815045
  91. 10.1007/s000120300002, Algebra Univ. 49 (2003), 35–49. (2003) Zbl1090.18004MR1978611DOI10.1007/s000120300002
  92. 10.1112/S0024609301008451, Bull. London Math. Soc. 33 (2001), 685–688. (2001) Zbl1031.18004MR1853779DOI10.1112/S0024609301008451
  93. Quantales, Current Research in Operational Quantum Logic: Algebras, Categories and Languages, B. Coecke, D. Moore, A. Wilce (eds.), Kluwer, Dordrecht, 2000, pp. 245–262. (2000) Zbl1008.46026MR1907153
  94. More on orthogonality in locally presentable categories, Cah. Topologie Géom. Différ. Catég. 42 (2001), 51–80. (2001) Zbl0981.18007MR1820765
  95. 10.1007/s000120200006, Algebra Univ. 48 (2002), 379–388. (2002) Zbl1061.18010MR1967087DOI10.1007/s000120200006
  96. 10.4310/HHA.2001.v3.n3.a1, Homol. Homot. and Appl. 3 (2001), 453–466. (2001) Zbl0993.18001MR1875916DOI10.4310/HHA.2001.v3.n3.a1
  97. 10.1006/jabr.2000.8577, J. Algebra 244 (2001), 450–477. (2001) Zbl1004.18006MR1859036DOI10.1006/jabr.2000.8577
  98. How algebraic is algebra, Theory Appl. Categ. 8 (2001), 253–283. (2001) Zbl0978.18006MR1825435
  99. 10.1016/S0021-8693(02)00043-1, J. Algebra 253 (2002), 1–13. (2002) Zbl1024.18002MR1925005DOI10.1016/S0021-8693(02)00043-1
  100. On a generalized small-object argument for the injective subcategory problem, Cah. Topologie Géom. Différ. Catég. 43 (2002), 83–106. (2002) Zbl1002.18002MR1913101
  101. 10.1023/A:1015270120061, Appl. Categ. Struct. 10 (2002), 237–249. (2002) Zbl0997.18002MR1916156DOI10.1023/A:1015270120061
  102. 10.1016/S0022-4049(02)00141-X, J. Pure Appl. Algebra 175 (2002), 355–382. (2002) Zbl1013.18001MR1935984DOI10.1016/S0022-4049(02)00141-X
  103. 10.1016/S0022-4049(02)00126-3, J. Pure Appl. Algebra 175 (2002), 7–30. (2002) Zbl1010.18005MR1935970DOI10.1016/S0022-4049(02)00126-3
  104. Injectivity and accessible categories, Cubo Matem. Educ. 4 (2002), 201–211. (2002) MR1928825
  105. Modal predicates and coequations, Electronic Notes in Theor. Comp. Sci. 65 (2002), 39–58. (2002) 
  106. 10.1090/S0002-9947-03-03322-1, Trans. Amer. Math. Soc. 355 (2003), 3611–3623. (2003) Zbl1030.55015MR1990164DOI10.1090/S0002-9947-03-03322-1
  107. 10.1023/A:1026106305210, Appl. Categ. Struct. 11 (2003), 543–560. (2003) Zbl1044.46052MR2017650DOI10.1023/A:1026106305210
  108. 10.1007/s10587-004-6413-9, Czech. Math. J. 54 (2004), 623–636. (2004) MR2086721DOI10.1007/s10587-004-6413-9
  109. 10.1016/j.jalgebra.2003.09.014, J. Algebra 272 (2004), 701–710. (2004) Zbl1040.18008MR2028077DOI10.1016/j.jalgebra.2003.09.014
  110. 10.1016/j.jalgebra.2003.06.009, J. Algebra 272 (2004), 730–738. (2004) Zbl1044.18002MR2028079DOI10.1016/j.jalgebra.2003.06.009
  111. On von Neumann varieties, Theory Appl. Categ. 13 (2004), 5–26. (2004) Zbl1057.18004MR2116320
  112. A characterization of locally D -presentable categories, Cah. Topologie Géom. Différ. Catég. 14 (2004), 141–147. (2004) MR2072935
  113. Special reflexive graphs in modular varieties, Algebra Univ. 52 (2004), 5–26. (2004) Zbl1087.08006MR2099784
  114. Semi-abelian monadic categories, Theory Appl. Categ. 13 (2004), 106–113. (2004) Zbl1063.18008MR2116325
  115. 10.1081/AGB-200063333, Algebra 33 (2005), 1903–1912. (2005) MR2150850DOI10.1081/AGB-200063333
  116. 10.1007/s10485-004-6730-z, Appl. Categ. Struct. 13 (2005), 141–160. (2005) MR2141595DOI10.1007/s10485-004-6730-z
  117. 10.1017/S0960129504004402, Math. Struct. Comp. Sci. 15 (2005), 149–166. (2005) Zbl1066.08005MR2121493DOI10.1017/S0960129504004402
  118. Generalized Brown representability in homotopy categories, Theory Appl. Categ. 14 (2005), 451–479. (2005) Zbl1091.18002MR2211427
  119. 10.1016/j.jpaa.2004.08.019, J. Pure Appl. Algebra 196 (2005), 229–250. (2005) Zbl1068.18002MR2110524DOI10.1016/j.jpaa.2004.08.019
  120. Pure morphisms in pro-categories, J. Pure Appl. Algebra 207 (2006), 19–35. (2006) Zbl1099.18002MR2244258
  121. Factorization systems and classification problems, Applied and Computational Category Theory (2006), 24–26. (2006) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.