The boolean prime ideal theorem holds iff maximal open filters exist
Cahiers de Topologie et Géométrie Différentielle Catégoriques (2002)
- Volume: 43, Issue: 4, page 313-315
- ISSN: 1245-530X
Access Full Article
topHow to cite
topRhineghost, Y. T.. "The boolean prime ideal theorem holds iff maximal open filters exist." Cahiers de Topologie et Géométrie Différentielle Catégoriques 43.4 (2002): 313-315. <http://eudml.org/doc/91663>.
@article{Rhineghost2002,
author = {Rhineghost, Y. T.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
language = {eng},
number = {4},
pages = {313-315},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {The boolean prime ideal theorem holds iff maximal open filters exist},
url = {http://eudml.org/doc/91663},
volume = {43},
year = {2002},
}
TY - JOUR
AU - Rhineghost, Y. T.
TI - The boolean prime ideal theorem holds iff maximal open filters exist
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2002
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 43
IS - 4
SP - 313
EP - 315
LA - eng
UR - http://eudml.org/doc/91663
ER -
References
top- [1] H. Herrlich: The axiom of choice holds iff maximal closed filters exist. Math. Log. Quart.49 (2003)2, to appear. Zbl1027.03039MR1979139
- [2] K. Keremedis and E. Tachtsis: On open and closed ultrafilters in topological spaces without the axiom of choice. Notes, March 2002.
- [3] M. Zisis: OFE is equivalent toBPI. Preprint, March 2002.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.