Ordered groupoids and étendues

Mark V. Lawson; Benjamin Steinberg

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2004)

  • Volume: 45, Issue: 2, page 82-108
  • ISSN: 1245-530X

How to cite

top

Lawson, Mark V., and Steinberg, Benjamin. "Ordered groupoids and étendues." Cahiers de Topologie et Géométrie Différentielle Catégoriques 45.2 (2004): 82-108. <http://eudml.org/doc/91681>.

@article{Lawson2004,
author = {Lawson, Mark V., Steinberg, Benjamin},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {topos; ordered groupoid; left cancellative category; presheaf; sheaf; étendue; Grothendieck topology; inverse semigroup; right action; cohomology},
language = {eng},
number = {2},
pages = {82-108},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Ordered groupoids and étendues},
url = {http://eudml.org/doc/91681},
volume = {45},
year = {2004},
}

TY - JOUR
AU - Lawson, Mark V.
AU - Steinberg, Benjamin
TI - Ordered groupoids and étendues
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2004
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 45
IS - 2
SP - 82
EP - 108
LA - eng
KW - topos; ordered groupoid; left cancellative category; presheaf; sheaf; étendue; Grothendieck topology; inverse semigroup; right action; cohomology
UR - http://eudml.org/doc/91681
ER -

References

top
  1. [1] M. Artin, A. Grothendieck, J.L. Verdier, Théorie des topos et cohomologie étale des schémasLecture Notes in Mathematics269, Springer-Verlag, 1972. MR354653
  2. [2] CH. Ehresmann, Oeuvres complètes et commentées, (ed. A. C. Ehresmann) Supplements to Cahiers de Topologie et Géometrie Différentielle, Amiens, 1980-83. 
  3. [3] P.J. Freyd, A. Scedrov, Categories, allegories, North-Holland, 1990. Zbl0698.18002MR1071176
  4. [4] A. Kock, I. Moerdijk, Presentations of étendues, PreprintAarhus Universitet, 1990. MR1142688
  5. [5] A. Kock, I. Moerdijk, Presentations of étendues, Cahiers de Topologie et Géométrie Différentielle Catégoriques32 (1991), 145-164. Zbl0745.18001MR1142688
  6. [6] H. Lausch, Cohomology of inverse semigroups, J. Algebra35 (1975), 273-303. Zbl0318.20032MR382521
  7. [7] M.V. Lawson, Inverse semigroups: the theory of partial symmetries, World-Scientific, Singapore, 1998. Zbl1079.20505MR1694900
  8. [8] M.V. Lawson, Left cancellative categories and ordered groupoids, PreprintUniversity of WalesBangor, 2003. 
  9. [9] J. Leech, Constructing inverse semigroups from small categories, Semigroup Forum36 (1987), 89-116. Zbl0634.18002MR902733
  10. [10] M. Loganathan, Cohomology of inverse semigroups, J. of Algebra70 (1981), 375-393. Zbl0465.20063MR623815
  11. [11] S. Mac Lane, Categories for the working mathematician, Springer-Verlag, 1971. Zbl0232.18001MR1712872
  12. [12] S. Mac Lane, I. Moerdijk, Sheaves in geometry and logic, Springer-Verlag, 1992. Zbl0822.18001MR1300636
  13. [13] J.C. Meakin, A. Yamamura, Bass-Serre theory and inverse monoids, in Semigroups and Applications (eds J. M. Howie, N. Ruškuc)World Scientific, Singapore, 1998, 125-140. Zbl0971.20040MR1715673
  14. [14] K.I. Rosenthal, Etendues and categories with monic maps, J. Pure and Applied Algebra22 (1981), 193-212. Zbl0473.18004MR624572
  15. [15] B.R. Tennison, Sheaf theory, CUP, 1975. Zbl0313.18010MR404390

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.