Constructing ordered groupoids

Mark V. Lawson

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2005)

  • Volume: 46, Issue: 2, page 123-138
  • ISSN: 1245-530X

How to cite

top

Lawson, Mark V.. "Constructing ordered groupoids." Cahiers de Topologie et Géométrie Différentielle Catégoriques 46.2 (2005): 123-138. <http://eudml.org/doc/91692>.

@article{Lawson2005,
author = {Lawson, Mark V.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {ordered groupoids; inverse semigroups},
language = {eng},
number = {2},
pages = {123-138},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Constructing ordered groupoids},
url = {http://eudml.org/doc/91692},
volume = {46},
year = {2005},
}

TY - JOUR
AU - Lawson, Mark V.
TI - Constructing ordered groupoids
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2005
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 46
IS - 2
SP - 123
EP - 138
LA - eng
KW - ordered groupoids; inverse semigroups
UR - http://eudml.org/doc/91692
ER -

References

top
  1. [1] A. Clifford, A class of d-simple semigroups, Amer. J. Math.75 (1953), 547-556. Zbl0051.01302MR56597
  2. [2] P. Dehornoy, Structural monoids associated to equational varieties, Proc. Amer. Math. Soc.117 (1993), 293-304. Zbl0776.08006MR1107919
  3. [3] C. Ehresmann, Oeuvres complètes et commentées, (ed A. C. Ehresmann) Supplements to Cahiers de Topologie et Géométrie Différentielle Amiens, 1980-83. 
  4. [4] N.D. Gilbert, HNN extensions of inverse semigroups and groupoids, to appear in J. Alg. Zbl1041.20042MR2029025
  5. [5] J.-Y. Girard, The geometry of interaction III: accommodating the additives, in Advances in linear logic (eds J.-Y. Girard, Y. Lafont, L. Regnier) Cambridge University Press, 1995. Zbl0828.03027MR1356021
  6. [6] J. Kellendonk, M.V. Lawson, Partial actions of groups, Inter. J. of Alg. and Computation14 (2004), 87-114. Zbl1056.20047MR2041539
  7. [7] H. Lausch, Cohomology of inverse semigroups, J. Alg.35 (1975), 273-303. Zbl0318.20032MR382521
  8. [8] M.V. Lawson, Inverse semigroups: the theory of partial symmetries, World Scientific, 1998. Zbl1079.20505MR1694900
  9. [9] M.V. Lawson, Constructing inverse semigroups from category actions, J. of Pure and Applied Alg.137 (1999), 57-101. Zbl0933.20048MR1679075
  10. [10] M.V. Lawson, J. Matthews, T. Porter, The homotopy theory of inverse semigroups, Inter. J. of Alg. and Computation12 (2002), 755-790. Zbl1050.55004MR1949696
  11. [11] M.V. Lawson, E*-unitary inverse semigroups, in Semigroups, algorithms, automata and languages (eds G. M. S. Gomes, J.-E. Pin, P. V. Silva) World Scientific, 2002, 195-214. Zbl1061.20056MR2023788
  12. [12] M.V. Lawson, Left cancellative categories and ordered groupoids, Semigroup Forum68 (2004), 458-470. Zbl1053.18001MR2050902
  13. [13] M.V. Lawson, B. Steinberg, Etendues and ordered groupoids, Cahiers de Topologie et Géométrie Différentielle CatégoriquesXLV (2004), 82-108. Zbl1060.18002MR2072933
  14. [14] M.V. Lawson, A correspondence between balanced varieties and inverse semigroups, Submitted. 
  15. [15] J. Leech, Constructing inverse semigroups from small categories, Semigroup Forum36 (1987), 89-116. Zbl0634.18002MR902733
  16. [16] M. Loganathan, Cohomology of inverse semigroups, J. Alg.70 (1981), 375-393. Zbl0465.20063MR623815
  17. [17] A.L.T. Paterson, Groupoids, inverse semigroups, and their C*-algebras, Birkhäuser, 1998. 
  18. [18] J. Renault, A groupoid approach to C*-algebras, Lecture Notes in Mathematics793, Springer-Verlag, Berlin, 1980. Zbl0433.46049MR584266
  19. [19] B. Steinberg, Factorization theorems for morphisms of ordered groupoids and inverse semigroups, Proc. Edinburgh Math. Soc.44 (2001), 549-569. Zbl0990.20043MR1875768

NotesEmbed ?

top

You must be logged in to post comments.