Constructing ordered groupoids

Mark V. Lawson

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2005)

  • Volume: 46, Issue: 2, page 123-138
  • ISSN: 1245-530X

How to cite

top

Lawson, Mark V.. "Constructing ordered groupoids." Cahiers de Topologie et Géométrie Différentielle Catégoriques 46.2 (2005): 123-138. <http://eudml.org/doc/91692>.

@article{Lawson2005,
author = {Lawson, Mark V.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {ordered groupoids; inverse semigroups},
language = {eng},
number = {2},
pages = {123-138},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Constructing ordered groupoids},
url = {http://eudml.org/doc/91692},
volume = {46},
year = {2005},
}

TY - JOUR
AU - Lawson, Mark V.
TI - Constructing ordered groupoids
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2005
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 46
IS - 2
SP - 123
EP - 138
LA - eng
KW - ordered groupoids; inverse semigroups
UR - http://eudml.org/doc/91692
ER -

References

top
  1. [1] A. Clifford, A class of d-simple semigroups, Amer. J. Math.75 (1953), 547-556. Zbl0051.01302MR56597
  2. [2] P. Dehornoy, Structural monoids associated to equational varieties, Proc. Amer. Math. Soc.117 (1993), 293-304. Zbl0776.08006MR1107919
  3. [3] C. Ehresmann, Oeuvres complètes et commentées, (ed A. C. Ehresmann) Supplements to Cahiers de Topologie et Géométrie Différentielle Amiens, 1980-83. 
  4. [4] N.D. Gilbert, HNN extensions of inverse semigroups and groupoids, to appear in J. Alg. Zbl1041.20042MR2029025
  5. [5] J.-Y. Girard, The geometry of interaction III: accommodating the additives, in Advances in linear logic (eds J.-Y. Girard, Y. Lafont, L. Regnier) Cambridge University Press, 1995. Zbl0828.03027MR1356021
  6. [6] J. Kellendonk, M.V. Lawson, Partial actions of groups, Inter. J. of Alg. and Computation14 (2004), 87-114. Zbl1056.20047MR2041539
  7. [7] H. Lausch, Cohomology of inverse semigroups, J. Alg.35 (1975), 273-303. Zbl0318.20032MR382521
  8. [8] M.V. Lawson, Inverse semigroups: the theory of partial symmetries, World Scientific, 1998. Zbl1079.20505MR1694900
  9. [9] M.V. Lawson, Constructing inverse semigroups from category actions, J. of Pure and Applied Alg.137 (1999), 57-101. Zbl0933.20048MR1679075
  10. [10] M.V. Lawson, J. Matthews, T. Porter, The homotopy theory of inverse semigroups, Inter. J. of Alg. and Computation12 (2002), 755-790. Zbl1050.55004MR1949696
  11. [11] M.V. Lawson, E*-unitary inverse semigroups, in Semigroups, algorithms, automata and languages (eds G. M. S. Gomes, J.-E. Pin, P. V. Silva) World Scientific, 2002, 195-214. Zbl1061.20056MR2023788
  12. [12] M.V. Lawson, Left cancellative categories and ordered groupoids, Semigroup Forum68 (2004), 458-470. Zbl1053.18001MR2050902
  13. [13] M.V. Lawson, B. Steinberg, Etendues and ordered groupoids, Cahiers de Topologie et Géométrie Différentielle CatégoriquesXLV (2004), 82-108. Zbl1060.18002MR2072933
  14. [14] M.V. Lawson, A correspondence between balanced varieties and inverse semigroups, Submitted. 
  15. [15] J. Leech, Constructing inverse semigroups from small categories, Semigroup Forum36 (1987), 89-116. Zbl0634.18002MR902733
  16. [16] M. Loganathan, Cohomology of inverse semigroups, J. Alg.70 (1981), 375-393. Zbl0465.20063MR623815
  17. [17] A.L.T. Paterson, Groupoids, inverse semigroups, and their C*-algebras, Birkhäuser, 1998. 
  18. [18] J. Renault, A groupoid approach to C*-algebras, Lecture Notes in Mathematics793, Springer-Verlag, Berlin, 1980. Zbl0433.46049MR584266
  19. [19] B. Steinberg, Factorization theorems for morphisms of ordered groupoids and inverse semigroups, Proc. Edinburgh Math. Soc.44 (2001), 549-569. Zbl0990.20043MR1875768

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.