On quantales that classify C * -algebras

David Kruml; Pedro Resende

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2004)

  • Volume: 45, Issue: 4, page 287-296
  • ISSN: 1245-530X

How to cite

top

Kruml, David, and Resende, Pedro. "On quantales that classify $C^\ast $-algebras." Cahiers de Topologie et Géométrie Différentielle Catégoriques 45.4 (2004): 287-296. <http://eudml.org/doc/91687>.

@article{Kruml2004,
author = {Kruml, David, Resende, Pedro},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {-algebras; involutive quantales},
language = {eng},
number = {4},
pages = {287-296},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {On quantales that classify $C^\ast $-algebras},
url = {http://eudml.org/doc/91687},
volume = {45},
year = {2004},
}

TY - JOUR
AU - Kruml, David
AU - Resende, Pedro
TI - On quantales that classify $C^\ast $-algebras
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2004
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 45
IS - 4
SP - 287
EP - 296
LA - eng
KW - -algebras; involutive quantales
UR - http://eudml.org/doc/91687
ER -

References

top
  1. [1] F. Borceux, J. Rosický, G. Van den Bossche.Quantales and C*algebras, J. London Math. Soc.40 (1989) 398-404. Zbl0705.06009MR1053610
  2. [2] R. Giles, H. Kummer, A non-commutative generalisation of topology, Indiana Univ. Math. J.21 (1971) 91-102. Zbl0219.54003MR293408
  3. [3] D. Kruml, Spatial quantales, Appl. Categ. Structures10 (2002) 49-62. Zbl0999.06015MR1883084
  4. [4] D. Kruml, J.W. Pelletier, P. Resende, J. Rosický, On quantales and spectra of C*-algebras, Appl. Categ. Structures11 (2003) 543-560; arXiv: math. OA/0211345. Zbl1044.46052MR2017650
  5. [5] C.J. Mulvey, &, Rend. Circ. Mat. Palermo (2) Suppl. (1986) 99— 104. Zbl0633.46065MR853151
  6. [6] C.J. Mulvey, Quantales, Invited Lecture, Summer Conference on Locales and Topological Groups, Curaçao, 1989. 
  7. [7] C.J. Mulvey, Quantales, in: M. Hazewinkel (Ed.), The Encyclopaedia of Mathematics, third supplement, Kluwer Academic Publishers, 2002, pp. 312-314. 
  8. [8] C.J. Mulvey, J.W. Pelletier, A quantisation of the calculus of relations, Canad. Math. Soc. Conf. Proc.13 (1992) 345-360. Zbl0793.06008MR1192157
  9. [9] C.J. Mulvey, J.W. Pelletier, On the quantisation of points, J. Pure Appl. Algebra159 (2001) 231-295. Zbl0983.18007MR1828940
  10. [10] C.J. Mulvey, J.W. Pelletier, On the quantisation of spaces, J. Pure Appl. Algebra175 (2002) 289-325. Zbl1026.06018MR1935983
  11. [11] C.J. Mulvey, P. Resende, A noncommutative theory of Penrose tilings; arXiv:math.CT/0306361. Zbl1087.52509MR2150184
  12. [12] J. Paseka, J. Rosický, Quantales, in: B. Coecke, D. Moore, A. Wilce, (Eds.), Current Research in Operational Quantum Logic: Algebras, Categories and Languages, Fund. Theories Phys., vol. 111, Kluwer Academic Publishers, 2000, pp. 245-262. Zbl0962.06017MR1907153
  13. [13] J.W. Pelletier, J. Rosický, Simple involutive quantales, J. Algebra195 (1997) 367-386. Zbl0894.06005MR1469630
  14. [14] P. Resende, From algebras to quantales and back, Talk at the Workshop on Categorical Structures for Descent and Galois Theory, Hopf Algebras and Semiabelian Categories, Fields Institute, Toronto, September 23-28, 2002, http://www.fields.utoronto.ca/programs/scientific/02-03/galois_and_hopf/. 
  15. [15] P. Resende, Sup-lattice 2-forms and quantales, J. Algebra276 (2004) 143-167; arXiv:math.RA/0211320. Zbl1059.06011MR2054391
  16. [16] J. Rosický, Multiplicative lattices and C*-algebras, Cahiers de Top. et Géom. Diff. Cat.XXX-2 (1989) 95—110. Zbl0676.46047MR1004734

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.