Weil prolongations of Banach manifolds in an analytic model of S D G

Eduardo J. Dubuc; Jorge G. Zilber

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2005)

  • Volume: 46, Issue: 2, page 83-98
  • ISSN: 1245-530X

How to cite

top

Dubuc, Eduardo J., and Zilber, Jorge G.. "Weil prolongations of Banach manifolds in an analytic model of $SDG$." Cahiers de Topologie et Géométrie Différentielle Catégoriques 46.2 (2005): 83-98. <http://eudml.org/doc/91694>.

@article{Dubuc2005,
author = {Dubuc, Eduardo J., Zilber, Jorge G.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
language = {eng},
number = {2},
pages = {83-98},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Weil prolongations of Banach manifolds in an analytic model of $SDG$},
url = {http://eudml.org/doc/91694},
volume = {46},
year = {2005},
}

TY - JOUR
AU - Dubuc, Eduardo J.
AU - Zilber, Jorge G.
TI - Weil prolongations of Banach manifolds in an analytic model of $SDG$
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2005
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 46
IS - 2
SP - 83
EP - 98
LA - eng
UR - http://eudml.org/doc/91694
ER -

References

top
  1. [1] Bunge, M., Dubuc, E.J.Local Concepts in Synthetic Differential Geometry and Germ Representability, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York,(1989). Zbl0658.18004MR930679
  2. [2] Cartan H.Ideaux de fonctions analytiques de n variables complexes, Annales de l'Ecole Normale, 3e serie, 61 (1944). Zbl0035.17103MR14472
  3. [3] Cartan H. Ideaux et Modules deFonctions Analytiques de variables complexes, Bulletin de laSoc. Math. de France, t. 78 (1950). Zbl0038.23703MR36848
  4. [4] Dubuc E.J.Sur les modeles de la geometrie Differentielle Synthetique, Cahiers de Top. et Geom. Diff.XX-3 (1979). Zbl0473.18008MR557083
  5. [5] Dubuc E.J., Taubin G.Analytic Rings, Cahiers de Top. et Geom. Diff.XXIV-3 (1983). Zbl0575.32004MR728632
  6. [6] Dubuc E.J., Zilber J.On Analytic Models of Synthetic Differential Geometry, Cahiers de Top. et Geom. Diff. Vol XXXV-1 (1994). Zbl0790.32009
  7. [7] Dubuc, E.J., Zilber, J.Banach Spaces in an Analytic Model of Synthetic Differential Geometry, Cahiers de Top. et Geom. Diff.XXXIX-2 (1998). Zbl0923.32024
  8. [8] Dubuc, E.J., Zilber, J.Inverse function theorems for Banach spaces in a topos, Cahiers de Top. et Geom. Diff.XLI-3 (2000). Zbl0974.47049
  9. [9] Ehresmann, C.Les prolongements d'une variete differentiable I, C.R.A.S.Paris233 (1951), also in Charles Ehresmann, oeuvres completes et commentes, Cahiers de Top. et Geom.Diff., supplement au volume XXIV (1983) 
  10. [10] Mujica, J. Holomorphic Functions and Domains ofHolomorphy in Finite and Infinite Dimensions, North Holland Mathematics Studies120 (1986). Zbl0586.46040MR842435
  11. [11] Weil, A.Theorie des points proches sur les varietes differentiables, ColloqueTop. et Geom. Diff., Strasbourg, (1953). Zbl0053.24903MR61455
  12. [12] Zilber J.Local Analytic Rings, Cahiers de Top. et Geom. Diff.XXXI-1 (1990). Zbl0705.32002MR1060606

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.