Inverse function theorems for Banach spaces in a topos

Eduardo J. Dubuc; Jorge C. Zilber

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2000)

  • Volume: 41, Issue: 3, page 207-224
  • ISSN: 1245-530X

How to cite

top

Dubuc, Eduardo J., and Zilber, Jorge C.. "Inverse function theorems for Banach spaces in a topos." Cahiers de Topologie et Géométrie Différentielle Catégoriques 41.3 (2000): 207-224. <http://eudml.org/doc/91634>.

@article{Dubuc2000,
author = {Dubuc, Eduardo J., Zilber, Jorge C.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {synthetic differential geometry; Goursat holomorphic functions; infinitesimal inverse function theorem; local inverse function theorem},
language = {eng},
number = {3},
pages = {207-224},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Inverse function theorems for Banach spaces in a topos},
url = {http://eudml.org/doc/91634},
volume = {41},
year = {2000},
}

TY - JOUR
AU - Dubuc, Eduardo J.
AU - Zilber, Jorge C.
TI - Inverse function theorems for Banach spaces in a topos
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2000
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 41
IS - 3
SP - 207
EP - 224
LA - eng
KW - synthetic differential geometry; Goursat holomorphic functions; infinitesimal inverse function theorem; local inverse function theorem
UR - http://eudml.org/doc/91634
ER -

References

top
  1. [1] Bunge M., Dubuc E. J.Local Concepts in Synthetic Differential Geometry and Germ Representability, Lectures Notes in Pure and Applied Mathematics, Marcel Dekker, New York, (1989). Zbl0658.18004MR930679
  2. [2] Cartan H.Idéaux de Fonctions Analytiques de n variables complexes, Annales de L' Ecole Normale, 3e serie, 61, (1944). Zbl0035.17103MR14472
  3. [3] Dubuc E. J., Zilber J. C., On Analytic Models of Synthetic Differential Geometry, Cahiers de Topologie et Geometrie Differential Categoriques, Vol XXXV-1 (1994). Zbl0790.32009
  4. [4] Dubuc E.J., Zilber J.C., Banach Spaces in an Analytic Model of Synthetic Differential Geometry, Cahiers de Topologie et Geometrie Differentielle Categoriques, Vol XXXIX-2 (1998). Zbl0923.32024
  5. [5] Dubuc E.J., Zilber J.C., Infinitesimal, local structure for Banach Spaces and its exponentials in a topos, Cahiers de Topologie et Geometrie Differentielle Categoriques, Vol Zbl0964.32015
  6. [6] Kaup L., Kaup B., Holomorphic Functions of Several Variables, Walter de Gruyter, Berlin, New York (1983). Zbl0528.32001MR716497
  7. [7] Mujica J., Holomorphic Functions and Domains ofHolomorphy in Finite and Infinte Dimensions, North Holland Mathematics Studies120 (1986). Zbl0586.46040MR842435

NotesEmbed ?

top

You must be logged in to post comments.