Inverse function theorems for Banach spaces in a topos
Eduardo J. Dubuc; Jorge C. Zilber
Cahiers de Topologie et Géométrie Différentielle Catégoriques (2000)
- Volume: 41, Issue: 3, page 207-224
- ISSN: 1245-530X
Access Full Article
topHow to cite
topReferences
top- [1] Bunge M., Dubuc E. J.Local Concepts in Synthetic Differential Geometry and Germ Representability, Lectures Notes in Pure and Applied Mathematics, Marcel Dekker, New York, (1989). Zbl0658.18004MR930679
- [2] Cartan H.Idéaux de Fonctions Analytiques de n variables complexes, Annales de L' Ecole Normale, 3e serie, 61, (1944). Zbl0035.17103MR14472
- [3] Dubuc E. J., Zilber J. C., On Analytic Models of Synthetic Differential Geometry, Cahiers de Topologie et Geometrie Differential Categoriques, Vol XXXV-1 (1994). Zbl0790.32009
- [4] Dubuc E.J., Zilber J.C., Banach Spaces in an Analytic Model of Synthetic Differential Geometry, Cahiers de Topologie et Geometrie Differentielle Categoriques, Vol XXXIX-2 (1998). Zbl0923.32024
- [5] Dubuc E.J., Zilber J.C., Infinitesimal, local structure for Banach Spaces and its exponentials in a topos, Cahiers de Topologie et Geometrie Differentielle Categoriques, Vol Zbl0964.32015
- [6] Kaup L., Kaup B., Holomorphic Functions of Several Variables, Walter de Gruyter, Berlin, New York (1983). Zbl0528.32001MR716497
- [7] Mujica J., Holomorphic Functions and Domains ofHolomorphy in Finite and Infinte Dimensions, North Holland Mathematics Studies120 (1986). Zbl0586.46040MR842435