Inverse function theorems for Banach spaces in a topos

Eduardo J. Dubuc; Jorge C. Zilber

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2000)

  • Volume: 41, Issue: 3, page 207-224
  • ISSN: 1245-530X

How to cite

top

Dubuc, Eduardo J., and Zilber, Jorge C.. "Inverse function theorems for Banach spaces in a topos." Cahiers de Topologie et Géométrie Différentielle Catégoriques 41.3 (2000): 207-224. <http://eudml.org/doc/91634>.

@article{Dubuc2000,
author = {Dubuc, Eduardo J., Zilber, Jorge C.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {synthetic differential geometry; Goursat holomorphic functions; infinitesimal inverse function theorem; local inverse function theorem},
language = {eng},
number = {3},
pages = {207-224},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Inverse function theorems for Banach spaces in a topos},
url = {http://eudml.org/doc/91634},
volume = {41},
year = {2000},
}

TY - JOUR
AU - Dubuc, Eduardo J.
AU - Zilber, Jorge C.
TI - Inverse function theorems for Banach spaces in a topos
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2000
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 41
IS - 3
SP - 207
EP - 224
LA - eng
KW - synthetic differential geometry; Goursat holomorphic functions; infinitesimal inverse function theorem; local inverse function theorem
UR - http://eudml.org/doc/91634
ER -

References

top
  1. [1] Bunge M., Dubuc E. J.Local Concepts in Synthetic Differential Geometry and Germ Representability, Lectures Notes in Pure and Applied Mathematics, Marcel Dekker, New York, (1989). Zbl0658.18004MR930679
  2. [2] Cartan H.Idéaux de Fonctions Analytiques de n variables complexes, Annales de L' Ecole Normale, 3e serie, 61, (1944). Zbl0035.17103MR14472
  3. [3] Dubuc E. J., Zilber J. C., On Analytic Models of Synthetic Differential Geometry, Cahiers de Topologie et Geometrie Differential Categoriques, Vol XXXV-1 (1994). Zbl0790.32009
  4. [4] Dubuc E.J., Zilber J.C., Banach Spaces in an Analytic Model of Synthetic Differential Geometry, Cahiers de Topologie et Geometrie Differentielle Categoriques, Vol XXXIX-2 (1998). Zbl0923.32024
  5. [5] Dubuc E.J., Zilber J.C., Infinitesimal, local structure for Banach Spaces and its exponentials in a topos, Cahiers de Topologie et Geometrie Differentielle Categoriques, Vol Zbl0964.32015
  6. [6] Kaup L., Kaup B., Holomorphic Functions of Several Variables, Walter de Gruyter, Berlin, New York (1983). Zbl0528.32001MR716497
  7. [7] Mujica J., Holomorphic Functions and Domains ofHolomorphy in Finite and Infinte Dimensions, North Holland Mathematics Studies120 (1986). Zbl0586.46040MR842435

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.