Equivariant evaluation subgroups and Rhodes groups
Marek Golasiński; Daciberg Gonçalves; Peter Wong
Cahiers de Topologie et Géométrie Différentielle Catégoriques (2007)
- Volume: 48, Issue: 1, page 55-69
- ISSN: 1245-530X
Access Full Article
topHow to cite
topGolasiński, Marek, Gonçalves, Daciberg, and Wong, Peter. "Equivariant evaluation subgroups and Rhodes groups." Cahiers de Topologie et Géométrie Différentielle Catégoriques 48.1 (2007): 55-69. <http://eudml.org/doc/91713>.
@article{Golasiński2007,
author = {Golasiński, Marek, Gonçalves, Daciberg, Wong, Peter},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {equivariant homotopy groups; equivariant maps; evaluation subgroups; Fox torus homotopy groups; Gottlieb groups; Jiang subgroups; homotopy groups of a transformation group},
language = {eng},
number = {1},
pages = {55-69},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Equivariant evaluation subgroups and Rhodes groups},
url = {http://eudml.org/doc/91713},
volume = {48},
year = {2007},
}
TY - JOUR
AU - Golasiński, Marek
AU - Gonçalves, Daciberg
AU - Wong, Peter
TI - Equivariant evaluation subgroups and Rhodes groups
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2007
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 48
IS - 1
SP - 55
EP - 69
LA - eng
KW - equivariant homotopy groups; equivariant maps; evaluation subgroups; Fox torus homotopy groups; Gottlieb groups; Jiang subgroups; homotopy groups of a transformation group
UR - http://eudml.org/doc/91713
ER -
References
top- [1] Borel, F., Sur les groupes fondamentaux des H-spaces, Comment. Math. Helv. 53 (1978), no. 1, 73-91. Zbl0372.55010MR482749
- [2] Fagundes, P. and Gonçalves D., Indices of equivariant maps of certain Jiang spaces, Topol. Methods Nonlinear Anal. 14 (1999), 151- 158. Zbl0961.55006MR1758883
- [3] Fox, R., Homotopy groups and torus homotopy groups, Ann. of Math. 49 (1948), 471-510. Zbl0038.36602MR27143
- [4] Golasiński, M. and Gonçalves, D., Equivariant Gottlieb groups, Cahiers Topologie Géom. Différentielle Catég. 42 (2001), 83-100. Zbl1161.55301MR1839358
- [5] Golasiński, M., Gonçalves, D. and Wong, P., Generalizations of Fox homotopy groups, Whitehead products, and Gottlieb groups, Ukrain. Math. Zh. 57 (2005), no. 3, 320-328 (translated in Ukainian Mat. J. 57 (2005) no. 3, 382-393). Zbl1094.55012MR2188429
- [6] Gottlieb, D., Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729-756. Zbl0185.27102MR275424
- [7] Guo, J., Relative and equivariant coincidence theory, Ph.D. Thesis, Memorial University, Newfoundland (December 1996). MR2699866
- [8] Jiang, B., Lectures on Nielsen Fixed Point Theory, Contemporary Mathematics 14, Amer. Math. Soc., Providence R.I. (1983). Zbl0512.55003MR685755
- [9] Lang, G., Evaluation subgroups of factor spaces, Pacific J. Math. 42 (1972), 701-709. Zbl0244.55018MR314043
- [10] Oprea, J., Finite group actions on spheres and the Gottlieb group, J. Korean Math. Soc. 28 (1991), 65-78. Zbl0736.55011MR1107213
- [11] Rhodes, F., On the fundamental group of a transformation group, Proc. London Math. Soc. 16 (1966), 635-650. Zbl0156.21901MR203715
- [12] Rhodes, F., Homotopy groups of transformation groups, Canad. J. Math. 21 (1969), 1123-1136. Zbl0183.28102MR248827
- [13] Siegel, J., G-spaces, H-spaces and W-spaces, Pacific J. Math. 31 (1969), 209-214. Zbl0183.51701MR251723
- [14] Vasquez, A.T., Flat Riemannian manifolds, J. Differential Geometry 4 (1970), 367-382. Zbl0209.25402MR267487
- [15] Wong, P., Equivariant Nielsen numbers, Pacific J. Math. 159 (1993), 153-175. Zbl0739.55001MR1211390
- [16] Woo, M. and Yoon, Y., Certain subgroups of homotopy groups of a transformation group, J. Korean Math. Soc. 20 (1983), 223-233. Zbl0542.57033MR745357
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.