Equivariant evaluation subgroups and Rhodes groups

Marek Golasiński; Daciberg Gonçalves; Peter Wong

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2007)

  • Volume: 48, Issue: 1, page 55-69
  • ISSN: 1245-530X

How to cite

top

Golasiński, Marek, Gonçalves, Daciberg, and Wong, Peter. "Equivariant evaluation subgroups and Rhodes groups." Cahiers de Topologie et Géométrie Différentielle Catégoriques 48.1 (2007): 55-69. <http://eudml.org/doc/91713>.

@article{Golasiński2007,
author = {Golasiński, Marek, Gonçalves, Daciberg, Wong, Peter},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {equivariant homotopy groups; equivariant maps; evaluation subgroups; Fox torus homotopy groups; Gottlieb groups; Jiang subgroups; homotopy groups of a transformation group},
language = {eng},
number = {1},
pages = {55-69},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Equivariant evaluation subgroups and Rhodes groups},
url = {http://eudml.org/doc/91713},
volume = {48},
year = {2007},
}

TY - JOUR
AU - Golasiński, Marek
AU - Gonçalves, Daciberg
AU - Wong, Peter
TI - Equivariant evaluation subgroups and Rhodes groups
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2007
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 48
IS - 1
SP - 55
EP - 69
LA - eng
KW - equivariant homotopy groups; equivariant maps; evaluation subgroups; Fox torus homotopy groups; Gottlieb groups; Jiang subgroups; homotopy groups of a transformation group
UR - http://eudml.org/doc/91713
ER -

References

top
  1. [1] Borel, F., Sur les groupes fondamentaux des H-spaces, Comment. Math. Helv. 53 (1978), no. 1, 73-91. Zbl0372.55010MR482749
  2. [2] Fagundes, P. and Gonçalves D., Indices of equivariant maps of certain Jiang spaces, Topol. Methods Nonlinear Anal. 14 (1999), 151- 158. Zbl0961.55006MR1758883
  3. [3] Fox, R., Homotopy groups and torus homotopy groups, Ann. of Math. 49 (1948), 471-510. Zbl0038.36602MR27143
  4. [4] Golasiński, M. and Gonçalves, D., Equivariant Gottlieb groups, Cahiers Topologie Géom. Différentielle Catég. 42 (2001), 83-100. Zbl1161.55301MR1839358
  5. [5] Golasiński, M., Gonçalves, D. and Wong, P., Generalizations of Fox homotopy groups, Whitehead products, and Gottlieb groups, Ukrain. Math. Zh. 57 (2005), no. 3, 320-328 (translated in Ukainian Mat. J. 57 (2005) no. 3, 382-393). Zbl1094.55012MR2188429
  6. [6] Gottlieb, D., Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729-756. Zbl0185.27102MR275424
  7. [7] Guo, J., Relative and equivariant coincidence theory, Ph.D. Thesis, Memorial University, Newfoundland (December 1996). MR2699866
  8. [8] Jiang, B., Lectures on Nielsen Fixed Point Theory, Contemporary Mathematics 14, Amer. Math. Soc., Providence R.I. (1983). Zbl0512.55003MR685755
  9. [9] Lang, G., Evaluation subgroups of factor spaces, Pacific J. Math. 42 (1972), 701-709. Zbl0244.55018MR314043
  10. [10] Oprea, J., Finite group actions on spheres and the Gottlieb group, J. Korean Math. Soc. 28 (1991), 65-78. Zbl0736.55011MR1107213
  11. [11] Rhodes, F., On the fundamental group of a transformation group, Proc. London Math. Soc. 16 (1966), 635-650. Zbl0156.21901MR203715
  12. [12] Rhodes, F., Homotopy groups of transformation groups, Canad. J. Math. 21 (1969), 1123-1136. Zbl0183.28102MR248827
  13. [13] Siegel, J., G-spaces, H-spaces and W-spaces, Pacific J. Math. 31 (1969), 209-214. Zbl0183.51701MR251723
  14. [14] Vasquez, A.T., Flat Riemannian manifolds, J. Differential Geometry 4 (1970), 367-382. Zbl0209.25402MR267487
  15. [15] Wong, P., Equivariant Nielsen numbers, Pacific J. Math. 159 (1993), 153-175. Zbl0739.55001MR1211390
  16. [16] Woo, M. and Yoon, Y., Certain subgroups of homotopy groups of a transformation group, J. Korean Math. Soc. 20 (1983), 223-233. Zbl0542.57033MR745357

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.