Equivariant Gottlieb groups

Marek Golasiński; Daciberg Lima Gonçalves

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2001)

  • Volume: 42, Issue: 2, page 83-100
  • ISSN: 1245-530X

How to cite

top

Golasiński, Marek, and Lima Gonçalves, Daciberg. "Equivariant Gottlieb groups." Cahiers de Topologie et Géométrie Différentielle Catégoriques 42.2 (2001): 83-100. <http://eudml.org/doc/91644>.

@article{Golasiński2001,
author = {Golasiński, Marek, Lima Gonçalves, Daciberg},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
language = {eng},
number = {2},
pages = {83-100},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Equivariant Gottlieb groups},
url = {http://eudml.org/doc/91644},
volume = {42},
year = {2001},
}

TY - JOUR
AU - Golasiński, Marek
AU - Lima Gonçalves, Daciberg
TI - Equivariant Gottlieb groups
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2001
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 42
IS - 2
SP - 83
EP - 100
LA - eng
UR - http://eudml.org/doc/91644
ER -

References

top
  1. [1] G. Allaud, On the classification of fiber spaces, Math. Z.92 (1966), 110-125. Zbl0139.16603MR189035
  2. [2] M. Bridson, A. Haefliger, Metric Spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften319, Springer-Verlag, Berlin (1999). Zbl0988.53001MR1744486
  3. [3] T. tom Dieck, Transformation Groups, Walter de Gruyter, Berlin-New Your (1987). Zbl0611.57002MR889050
  4. [4] A. Elmendorf, Systems of fixed point sets, Trans. Amer. Math. Soc.277 (1983), 275-284. Zbl0521.57027MR690052
  5. [5] P.L. Fagundes, D.L. Gonçalves, Fixed point indices of equivariant maps of certain Jiang spaces, Topol. Methods Nonlinear Anal.14, no. 1 (1999), 151-158. Zbl0961.55006MR1758883
  6. [6] R. Fritsch, R.A. Piccinini, Cellular structures in topology, Cambridge University Press, Cambridge (1990). Zbl0837.55001MR1074175
  7. [7] D.H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. of Math.87 (1965), 840-856. Zbl0148.17106MR189027
  8. [8] Evaluation subgroups of homotopy groups, Amer. J. of Math.91 (1969), 729-756. Zbl0185.27102MR275424
  9. [9] —, On fibre spaces and the evaluation map, Ann. of Math.87 (1968), 42-56. Zbl0173.25901MR221508
  10. [10] —, Correction to "On fibre spaces and the evaluation map", Ann. of Math.87 (1968), 641-642. MR221508
  11. [11] W. Lück, Transformation groups and algebraic K-theory, Lect. Notes in Math. 1408, Springer-Verlag (1989). Zbl0679.57022MR1027600
  12. [12] J. Oprea, Gottlieb groups, group actions, fixed points and rational homotopy, Lecture Notes Series29, Seoul (1995). Zbl0834.55001MR1350536
  13. [13] J. Pak, M.H. Woo, Gottlieb groups of lens spaces, Bull. Korean Math. Soc.36, no. 3 (1999), 621-627. Zbl0940.55016MR1722191
  14. [14] Y. Shitanda, Abstract homotopy theory and homotopy theory of functor category, Hiroshima Math. J.19 (1989), 477-497. Zbl0701.18010MR1035138
  15. [15] S. Waner, Equivariant classifying spaces and fibrations, Trans. Amer. Math. Soc.250 (1980), 384-405. Zbl0447.55011MR558180
  16. [16] P. Wong, Equivariant Nielsen numbers, Pac. J. Math.159 (1993), 153-175. Zbl0739.55001MR1211390

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.