On clones determined by their initial segments

J. Sichler; V. Trnková

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2008)

  • Volume: 49, Issue: 3, page 209-227
  • ISSN: 1245-530X

How to cite

top

Sichler, J., and Trnková, V.. "On clones determined by their initial segments." Cahiers de Topologie et Géométrie Différentielle Catégoriques 49.3 (2008): 209-227. <http://eudml.org/doc/91737>.

@article{Sichler2008,
author = {Sichler, J., Trnková, V.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {term clone; polynomial clone; centralizer clone; locally isomorphic clones},
language = {eng},
number = {3},
pages = {209-227},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {On clones determined by their initial segments},
url = {http://eudml.org/doc/91737},
volume = {49},
year = {2008},
}

TY - JOUR
AU - Sichler, J.
AU - Trnková, V.
TI - On clones determined by their initial segments
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2008
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 49
IS - 3
SP - 209
EP - 227
LA - eng
KW - term clone; polynomial clone; centralizer clone; locally isomorphic clones
UR - http://eudml.org/doc/91737
ER -

References

top
  1. [1] J. Adámek, H. Herrlich and G. E. Strecker, Abstract and Concrete Categories, Wiley, New York. Zbl0695.18001MR1051419
  2. [2] J. T. Baldwin and J. Berman, Elementary classes of varieties, Houston. J. Math. 7 (1981),473-492. Zbl0487.08007MR658563
  3. [3] P. M. Cohn, Universal Algebra, Harper and Row, New York, 1965. Zbl0141.01002MR175948
  4. [4] G. Grätzer, Universal Algebra, Second Edition, Springer-Verlag, New York, 1979. MR538623
  5. [5] P. Hall, Some word problems, J. London Math. Soc. 33 (1958), 482-496. Zbl0198.02902MR102540
  6. [6] F. W. Lawvere, Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 869-872. Zbl0119.25901MR158921
  7. [7] F. W. Lawvere, Some algebraic pwblems in the context of functorial semantics of algebraic theories, Lect. N. in Math., vol. 61, Springer-Verlag, Berlin and New York, 1968, pp. 41-46. Zbl0204.33802MR231882
  8. [8] K. D. Magill, The semigroup of endomorphisms of a Boolean ring, Semigroup Forum 4 (1972),411-416. Zbl0224.06007MR272690
  9. [9] K. D. Magill, A survey of semigroups of continuons selfmaps, Semigroup Forum 11 ( 1975/76), 189-282. Zbl0338.20088MR393330
  10. [10] C. J. Maxson, On semigroups of Boolean ring endomorphisms, Semigroup Forum 4 (1972), 78-82. Zbl0262.06011MR297900
  11. [11] R. N. McKenzie, G. F. McNulty and W. F. Taylor, Algebras, Lattices, Varieties, Volume 1, Wadsworth & Brooks/Cole, Monterey, California, 1987. Zbl0611.08001
  12. [12] R. N. McKenzie and C. Tsinakis, On recovering of a bounded distributive lattice from its endomorphism monoid, Houston J. Math 7 (1981), 525-529. Zbl0492.06009MR658568
  13. [13] E. L. Post, Introduction to a general theory of elementary propositions, Amer. J. Math. 43 (1921), 163-185. Zbl48.1122.01MR1506440JFM48.1122.01
  14. [14] E. L. Post, The Two-valued Iterative Systems of Mathematical Logic, Annals of Mathematics Studies No. 5, Princeton University Press, Princeton, N. J., 1941. Zbl0063.06326MR4195
  15. [15] B. M. Schein, Ordered sets, semilattices, distributive lattices and Boolean algebras with homomorphic endomorphism semigroups, Fund. Math. 68 (1970), 31-50. Zbl0197.28902MR272686
  16. [16] J. Sichler and V. Trnková, Clones in topology and algebra, Acta Math. Univ. Comenianae 66 (1997), 243-260. Zbl0970.08004MR1620417
  17. [17] J. Sichler and V. Trnková, Clone segment independence in topology and algebra, Acta Sci. Math. (Szeged) 68 (2002), 611-672. Zbl1017.54006MR1954539
  18. [18] Á. Szendrei, Clones in Universal Algebra, Les Presses de L'Université de Montréal, 1986. Zbl0603.08004MR859550
  19. [19] W. Taylor, The Clone of a Topological Space, Research and Exposition in Mathematics, vol. 13, 1986, Heldermann Verlag, 1986. Zbl0615.54013MR879120
  20. [20] V. Trnková, Representability and local representability of algebraic theories, Algebra Universalis 29 (1998), 121-144. Zbl0936.18007MR1636983
  21. [21] V. Trnková and J. Sichler, All clones are centralizer clones, preprint (2007). Zbl1201.03017MR2551786
  22. J. Sichler, Department of Mathematics, University of Manitoba, Winnipeg, MB, Canada R3T 2N2, sichler@cc.umanitoba.ca 
  23. V. Trnková, Mathematical Institute of Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic, trnkova@karlin.mff.cuni.cz 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.