On clones determined by their initial segments
Cahiers de Topologie et Géométrie Différentielle Catégoriques (2008)
- Volume: 49, Issue: 3, page 209-227
- ISSN: 1245-530X
Access Full Article
topHow to cite
topSichler, J., and Trnková, V.. "On clones determined by their initial segments." Cahiers de Topologie et Géométrie Différentielle Catégoriques 49.3 (2008): 209-227. <http://eudml.org/doc/91737>.
@article{Sichler2008,
author = {Sichler, J., Trnková, V.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {term clone; polynomial clone; centralizer clone; locally isomorphic clones},
language = {eng},
number = {3},
pages = {209-227},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {On clones determined by their initial segments},
url = {http://eudml.org/doc/91737},
volume = {49},
year = {2008},
}
TY - JOUR
AU - Sichler, J.
AU - Trnková, V.
TI - On clones determined by their initial segments
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2008
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 49
IS - 3
SP - 209
EP - 227
LA - eng
KW - term clone; polynomial clone; centralizer clone; locally isomorphic clones
UR - http://eudml.org/doc/91737
ER -
References
top- [1] J. Adámek, H. Herrlich and G. E. Strecker, Abstract and Concrete Categories, Wiley, New York. Zbl0695.18001MR1051419
- [2] J. T. Baldwin and J. Berman, Elementary classes of varieties, Houston. J. Math. 7 (1981),473-492. Zbl0487.08007MR658563
- [3] P. M. Cohn, Universal Algebra, Harper and Row, New York, 1965. Zbl0141.01002MR175948
- [4] G. Grätzer, Universal Algebra, Second Edition, Springer-Verlag, New York, 1979. MR538623
- [5] P. Hall, Some word problems, J. London Math. Soc. 33 (1958), 482-496. Zbl0198.02902MR102540
- [6] F. W. Lawvere, Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 869-872. Zbl0119.25901MR158921
- [7] F. W. Lawvere, Some algebraic pwblems in the context of functorial semantics of algebraic theories, Lect. N. in Math., vol. 61, Springer-Verlag, Berlin and New York, 1968, pp. 41-46. Zbl0204.33802MR231882
- [8] K. D. Magill, The semigroup of endomorphisms of a Boolean ring, Semigroup Forum 4 (1972),411-416. Zbl0224.06007MR272690
- [9] K. D. Magill, A survey of semigroups of continuons selfmaps, Semigroup Forum 11 ( 1975/76), 189-282. Zbl0338.20088MR393330
- [10] C. J. Maxson, On semigroups of Boolean ring endomorphisms, Semigroup Forum 4 (1972), 78-82. Zbl0262.06011MR297900
- [11] R. N. McKenzie, G. F. McNulty and W. F. Taylor, Algebras, Lattices, Varieties, Volume 1, Wadsworth & Brooks/Cole, Monterey, California, 1987. Zbl0611.08001
- [12] R. N. McKenzie and C. Tsinakis, On recovering of a bounded distributive lattice from its endomorphism monoid, Houston J. Math 7 (1981), 525-529. Zbl0492.06009MR658568
- [13] E. L. Post, Introduction to a general theory of elementary propositions, Amer. J. Math. 43 (1921), 163-185. Zbl48.1122.01MR1506440JFM48.1122.01
- [14] E. L. Post, The Two-valued Iterative Systems of Mathematical Logic, Annals of Mathematics Studies No. 5, Princeton University Press, Princeton, N. J., 1941. Zbl0063.06326MR4195
- [15] B. M. Schein, Ordered sets, semilattices, distributive lattices and Boolean algebras with homomorphic endomorphism semigroups, Fund. Math. 68 (1970), 31-50. Zbl0197.28902MR272686
- [16] J. Sichler and V. Trnková, Clones in topology and algebra, Acta Math. Univ. Comenianae 66 (1997), 243-260. Zbl0970.08004MR1620417
- [17] J. Sichler and V. Trnková, Clone segment independence in topology and algebra, Acta Sci. Math. (Szeged) 68 (2002), 611-672. Zbl1017.54006MR1954539
- [18] Á. Szendrei, Clones in Universal Algebra, Les Presses de L'Université de Montréal, 1986. Zbl0603.08004MR859550
- [19] W. Taylor, The Clone of a Topological Space, Research and Exposition in Mathematics, vol. 13, 1986, Heldermann Verlag, 1986. Zbl0615.54013MR879120
- [20] V. Trnková, Representability and local representability of algebraic theories, Algebra Universalis 29 (1998), 121-144. Zbl0936.18007MR1636983
- [21] V. Trnková and J. Sichler, All clones are centralizer clones, preprint (2007). Zbl1201.03017MR2551786
- J. Sichler, Department of Mathematics, University of Manitoba, Winnipeg, MB, Canada R3T 2N2, sichler@cc.umanitoba.ca
- V. Trnková, Mathematical Institute of Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic, trnkova@karlin.mff.cuni.cz
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.