C -antiderivatives of p -adic C -functions

Wilhelm H. Schikhof

Groupe de travail d'analyse ultramétrique (1981-1982)

  • Volume: 9, Issue: 3, page J1-J4

How to cite

top

Schikhof, Wilhelm H.. "$C^ \infty $-antiderivatives of $p$-adic $C^ \infty $-functions." Groupe de travail d'analyse ultramétrique 9.3 (1981-1982): J1-J4. <http://eudml.org/doc/91889>.

@article{Schikhof1981-1982,
author = {Schikhof, Wilhelm H.},
journal = {Groupe de travail d'analyse ultramétrique},
keywords = {non-Archimedean analysis; infinitely differentiable functions; antiderivatives},
language = {eng},
number = {3},
pages = {J1-J4},
publisher = {Secrétariat mathématique},
title = {$C^ \infty $-antiderivatives of $p$-adic $C^ \infty $-functions},
url = {http://eudml.org/doc/91889},
volume = {9},
year = {1981-1982},
}

TY - JOUR
AU - Schikhof, Wilhelm H.
TI - $C^ \infty $-antiderivatives of $p$-adic $C^ \infty $-functions
JO - Groupe de travail d'analyse ultramétrique
PY - 1981-1982
PB - Secrétariat mathématique
VL - 9
IS - 3
SP - J1
EP - J4
LA - eng
KW - non-Archimedean analysis; infinitely differentiable functions; antiderivatives
UR - http://eudml.org/doc/91889
ER -

References

top
  1. [1] Schikhof ( W.H.). - Non-archimedean calculus. - Mathematisch instituut, Nijmegen, 1978 (Lecture Notes. Report7812). Zbl0463.26007MR522166

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.