The -adic gamma function and the congruences of Atkin and Swinnerton-Dyer
Groupe de travail d'analyse ultramétrique (1981-1982)
- Volume: 9, Issue: 3, page J1-J6
Access Full Article
topHow to cite
topVan Hamme, Lucien. "The $p$-adic gamma function and the congruences of Atkin and Swinnerton-Dyer." Groupe de travail d'analyse ultramétrique 9.3 (1981-1982): J1-J6. <http://eudml.org/doc/91890>.
@article{VanHamme1981-1982,
author = {Van Hamme, Lucien},
journal = {Groupe de travail d'analyse ultramétrique},
keywords = {Morita's p-adic gamma function; Atkin-Swinnerton-Dyer's congruences; Gross-Koblitz's formula},
language = {eng},
number = {3},
pages = {J1-J6},
publisher = {Secrétariat mathématique},
title = {The $p$-adic gamma function and the congruences of Atkin and Swinnerton-Dyer},
url = {http://eudml.org/doc/91890},
volume = {9},
year = {1981-1982},
}
TY - JOUR
AU - Van Hamme, Lucien
TI - The $p$-adic gamma function and the congruences of Atkin and Swinnerton-Dyer
JO - Groupe de travail d'analyse ultramétrique
PY - 1981-1982
PB - Secrétariat mathématique
VL - 9
IS - 3
SP - J1
EP - J6
LA - eng
KW - Morita's p-adic gamma function; Atkin-Swinnerton-Dyer's congruences; Gross-Koblitz's formula
UR - http://eudml.org/doc/91890
ER -
References
top- [1] Atkin ( A.) and Swinnerton-Dyer ( H.). - Modular forms on noncongruence subgroups, "Combinatorics", p. 1-25. - Providence, American mathematical Society, 1979 (Proceedings of Symposia in pure Mathematics, 19). Zbl0235.10015MR337781
- [2] Gauss ( C.F.). - Disquisitiones arithmeticae. - New Haven, London, Yale university Press, 1966. Zbl0136.32301MR197380
- [3] Gross ( B.) and Koblitz ( N.). - Gauss sums and the p-adic Γ-function, Annals of Math., Series 2, t. 109, 1979, p. 569-581. Zbl0406.12010
- [4] Gross ( B.). - On the factorization of p-adic L-series, Invent. Math., Berlin, t. 57, 1980, p. 83-95. Zbl0472.12011MR564185
- [5] Lang ( S.). - Cyclotomic fields, II. - New York, Heidelberg, Berlin, Springer-Verlag, 1980 (Graduate texts in Mathematics, 69). Zbl0435.12001MR566952
- [6] Tate ( J.). - Rational Points on elliptic curves, Philips Lectures, Haverford College, 1961.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.