The p -adic gamma function and the congruences of Atkin and Swinnerton-Dyer

Lucien Van Hamme

Groupe de travail d'analyse ultramétrique (1981-1982)

  • Volume: 9, Issue: 3, page J1-J6

How to cite

top

Van Hamme, Lucien. "The $p$-adic gamma function and the congruences of Atkin and Swinnerton-Dyer." Groupe de travail d'analyse ultramétrique 9.3 (1981-1982): J1-J6. <http://eudml.org/doc/91890>.

@article{VanHamme1981-1982,
author = {Van Hamme, Lucien},
journal = {Groupe de travail d'analyse ultramétrique},
keywords = {Morita's p-adic gamma function; Atkin-Swinnerton-Dyer's congruences; Gross-Koblitz's formula},
language = {eng},
number = {3},
pages = {J1-J6},
publisher = {Secrétariat mathématique},
title = {The $p$-adic gamma function and the congruences of Atkin and Swinnerton-Dyer},
url = {http://eudml.org/doc/91890},
volume = {9},
year = {1981-1982},
}

TY - JOUR
AU - Van Hamme, Lucien
TI - The $p$-adic gamma function and the congruences of Atkin and Swinnerton-Dyer
JO - Groupe de travail d'analyse ultramétrique
PY - 1981-1982
PB - Secrétariat mathématique
VL - 9
IS - 3
SP - J1
EP - J6
LA - eng
KW - Morita's p-adic gamma function; Atkin-Swinnerton-Dyer's congruences; Gross-Koblitz's formula
UR - http://eudml.org/doc/91890
ER -

References

top
  1. [1] Atkin ( A.) and Swinnerton-Dyer ( H.). - Modular forms on noncongruence subgroups, "Combinatorics", p. 1-25. - Providence, American mathematical Society, 1979 (Proceedings of Symposia in pure Mathematics, 19). Zbl0235.10015MR337781
  2. [2] Gauss ( C.F.). - Disquisitiones arithmeticae. - New Haven, London, Yale university Press, 1966. Zbl0136.32301MR197380
  3. [3] Gross ( B.) and Koblitz ( N.). - Gauss sums and the p-adic Γ-function, Annals of Math., Series 2, t. 109, 1979, p. 569-581. Zbl0406.12010
  4. [4] Gross ( B.). - On the factorization of p-adic L-series, Invent. Math., Berlin, t. 57, 1980, p. 83-95. Zbl0472.12011MR564185
  5. [5] Lang ( S.). - Cyclotomic fields, II. - New York, Heidelberg, Berlin, Springer-Verlag, 1980 (Graduate texts in Mathematics, 69). Zbl0435.12001MR566952
  6. [6] Tate ( J.). - Rational Points on elliptic curves, Philips Lectures, Haverford College, 1961. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.