Non standard arithmetic and application to height functions

Gerhard Frey

Groupe de travail d'analyse ultramétrique (1981-1982)

  • Volume: 9, Issue: 3, page J1-J2

How to cite

top

Frey, Gerhard. "Non standard arithmetic and application to height functions." Groupe de travail d'analyse ultramétrique 9.3 (1981-1982): J1-J2. <http://eudml.org/doc/91900>.

@article{Frey1981-1982,
author = {Frey, Gerhard},
journal = {Groupe de travail d'analyse ultramétrique},
keywords = {rational points of Jacobians of curves; Neron-Tate height; non standard arithmetic in number fields; Fricke involution; Hecke operator; Mordell conjecture; elliptic curve; number of isogenies},
language = {eng},
number = {3},
pages = {J1-J2},
publisher = {Secrétariat mathématique},
title = {Non standard arithmetic and application to height functions},
url = {http://eudml.org/doc/91900},
volume = {9},
year = {1981-1982},
}

TY - JOUR
AU - Frey, Gerhard
TI - Non standard arithmetic and application to height functions
JO - Groupe de travail d'analyse ultramétrique
PY - 1981-1982
PB - Secrétariat mathématique
VL - 9
IS - 3
SP - J1
EP - J2
LA - eng
KW - rational points of Jacobians of curves; Neron-Tate height; non standard arithmetic in number fields; Fricke involution; Hecke operator; Mordell conjecture; elliptic curve; number of isogenies
UR - http://eudml.org/doc/91900
ER -

References

top
  1. [1] Frey ( G.). - Rationale Punkte auf Fermatkurven und getwisteten Modulkurven, J. für reine und angew. Math., t. 331, 1982, p. 185-191. Zbl0474.14011MR647382
  2. [2] Frey ( G. ) . - Cyclic isogenies and nonstandard arithemtic, J. Number Theory, t. 12, 1980, p. 343-363. Zbl0439.14004MR586463
  3. [3] Kani ( E.). - Eine Verallgemeinerung des Satzes von Castelnuovo-Severi, J. für reine und angew. Math., t. 318, 1980, p. 178-220. Zbl0472.14017MR579391
  4. [4] Kani ( E.). - Nonstandard diophantine geometry, "Proceedings of the Queen's numberstheory conference [1979. Kingston]", p. 129-172. - Kingston, Queen's university, 1980 (Queen's Papers in pure and applied Mathematics, 54). Zbl0454.14010MR634687
  5. [5] Robinson ( A.) and Roquette ( P. ) . - On the finiteness theorem of Siegel and Mahler concerning diophantine equations, J. Number Theory, t. 7, 1975, p. 121- 176. Zbl0299.12107MR374022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.