Résidu en s = 1 de certaines fonctions d'Iwasawa

Thong Nguyen-Quang-Do

Groupe de travail d'analyse ultramétrique (1983-1984)

  • Volume: 11, page 1-9

How to cite

top

Nguyen-Quang-Do, Thong. "Résidu en s = 1 de certaines fonctions d'Iwasawa." Groupe de travail d'analyse ultramétrique 11 (1983-1984): 1-9. <http://eudml.org/doc/91917>.

@article{Nguyen1983-1984,
author = {Nguyen-Quang-Do, Thong},
journal = {Groupe de travail d'analyse ultramétrique},
keywords = {Leopoldt conjecture; p-adic zeta-function; Iwasawa zeta-function},
language = {fre},
pages = {1-9},
publisher = {Secrétariat mathématique},
title = {Résidu en s = 1 de certaines fonctions d'Iwasawa},
url = {http://eudml.org/doc/91917},
volume = {11},
year = {1983-1984},
}

TY - JOUR
AU - Nguyen-Quang-Do, Thong
TI - Résidu en s = 1 de certaines fonctions d'Iwasawa
JO - Groupe de travail d'analyse ultramétrique
PY - 1983-1984
PB - Secrétariat mathématique
VL - 11
SP - 1
EP - 9
LA - fre
KW - Leopoldt conjecture; p-adic zeta-function; Iwasawa zeta-function
UR - http://eudml.org/doc/91917
ER -

References

top
  1. [1] Coates ( John). - On K and some classical conjectures in algebraic number theory, Annals of Math., Series 2, t. 95, 1972, p. 99-116. Zbl0245.12005MR360523
  2. [2] Fröhlich ( A.) (editor). - Algebraic number fields ( L-functions and Galois proparties), Proceedings of a symposium organised by the London mathematical Society [1975. Durham]. - London, New York, San Francisco, Academic Press, 1977. Zbl0339.00010
  3. [3] Gillard ( Roland). - Formulations de la conjecture de Leopoldt et étude d'une condition suffisante, Abh. Math. Semin. Univ. Hamburg, t. 48, 1979, p. 125- 138. Zbl0396.12008
  4. [4] Gras ( Georges). - Groupe de Galois de la p-extension abélienne p-ramifiée maximale d'un corps de nombres, J. für reine und angew. Math., t. 333, 1982, p. 86-132. Zbl0477.12009
  5. [5] Haberland ( Klaus). - Galois cohomology of algebraic number fields. - Berlin, VEB Deutscher Verlag der Wissenschaften, 1978. Zbl0418.12004MR519872
  6. [6] Iwasawa ( Kenkichi). - On Z -extensions of algebraic number fields, Annals of Math., Series 2, t. 98, 1973, p. 246-326. Zbl0285.12008MR349627
  7. [7] Kramer ( Kenneth) and Candiotti ( Alan). - On K and Zρ-extensions of number fields, Amer. J.of Math., t. 100, 1978, p. 177-196. Zbl0388.12004
  8. [8] Miki ( Hiroo). - On the maximal abelian l-extension of a finite algebraic number field with given ramification, Nagoya math. J., t. 70, 1978, p. 183-202. Zbl0398.12003MR480420
  9. [9] Nguyen-Quang-Do ( Thong). - Sur la structure galoisienne des corps locaux et la théorie d'Iwasawa, Comp. Math., Gröningen (à paraître). Zbl0481.12004
  10. [10] Nguyen-Quang-Do ( Thong). - Formations de classes et modules d'Iwasawa (à paraître). Zbl0543.12007
  11. [11] Serre ( Jean-Pierre). - Cohomologie galoisienne, 2e édition. - Berlin, Heidelberg, New York, Sprinter-Verlag, 1964 (Lecture Notes in Mathematics, 5). Zbl0128.26303MR1324577

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.