Stable reduction and rigid analytic uniformization of abelian varieties

Siegfried Bosch

Groupe de travail d'analyse ultramétrique (1983-1984)

  • Volume: 11, page 1-4

How to cite

top

Bosch, Siegfried. "Stable reduction and rigid analytic uniformization of abelian varieties." Groupe de travail d'analyse ultramétrique 11 (1983-1984): 1-4. <http://eudml.org/doc/91918>.

@article{Bosch1983-1984,
author = {Bosch, Siegfried},
journal = {Groupe de travail d'analyse ultramétrique},
language = {eng},
pages = {1-4},
publisher = {Secrétariat mathématique},
title = {Stable reduction and rigid analytic uniformization of abelian varieties},
url = {http://eudml.org/doc/91918},
volume = {11},
year = {1983-1984},
}

TY - JOUR
AU - Bosch, Siegfried
TI - Stable reduction and rigid analytic uniformization of abelian varieties
JO - Groupe de travail d'analyse ultramétrique
PY - 1983-1984
PB - Secrétariat mathématique
VL - 11
SP - 1
EP - 4
LA - eng
UR - http://eudml.org/doc/91918
ER -

References

top
  1. [Ab] Abhyankar ( Shreeram S.). - Resolution of singularities of arithmetical surfaces, "Arithmetical algebraic geometry", Proceedings of a Conference held at Purdue University 1963, p. 111-152. - New York, Harper and Row Publishers, 1965 (Harper's Series in Modern Mathematics). Zbl0147.20503MR200272
  2. [BL] Bosch ( S.) and Lütkebohmert ( W.). - Stable reduction and uniformization of abelian varieties, I, II (to appear). Zbl0554.14012MR774362
  3. [DM] Deligne ( P.) and Mumford ( D.). - The irreducibility of the space of curves of given genus. - Paris, Presses universitaires de France, 1969 (Institut des hautes Etudes scientifiques, Publications mathématiques, 36, p. 75- 110). Zbl0181.48803MR262240
  4. [Li] Lipman ( Joseph). - Desingularization of two-dimensional schemes, Annals of Math., Series 2, t. 107, 1978, p. 151-207. Zbl0349.14004MR491722
  5. [M1] Mumford ( David). - An analytic construction of degenerating curves over complete local rings, Compos. Math., Groningen, t. 24, 1972, p. 129-174. Zbl0228.14011MR352105
  6. [M2] Mumford ( David). - An analytic construction of degenerating abelian varieties over complete rings, Compos. Math., Groningen, t. 24, 1972, p. 239- 272. Zbl0241.14020MR352106
  7. [N] Neron ( André). - Modèles minimauz des variétés abéliennes sur les corps locaux et globaux. - Paris, Presses universitaires de France, 1964 (Institut des hautes Etudes scientifiques, Publications mathématiques, 21). Zbl0132.41403
  8. [P] Van Der Put ( M.). - Stable reductions of algebraic curves, Report Rijksuniversiteit Groningen, 1981. 
  9. [R1] Raynaud ( Michel). - Modèles de Néron, C. R. Acad. Sc. Paris, t. 262, 1966, série A, p. 345-347. Zbl0141.18203MR194421
  10. [R2] Raynaud ( Michel). - Variétés abéliennes et géométrie rigide, "Actes du Congrès international des Mathématiciens", 1970 [Nice], vol. 1, p. 473-477. - Paris, Gauthier-Villars, 1971. Zbl0223.14021MR427326
  11. [R3] Raynaud ( Michel). - Spécialisation du foncteur de Picard, C. R. Acad. Sc. Paris, t. 264, 1967, série A, p. 941-943 ; p. 1001-1004. Zbl0148.41701MR237514
  12. [SGA7] Grothendieck ( A.). - Groupes de monodromie en géométrie algébrique (SGA 7, I). - Berlin, Heidelberg, New York, Springer-Verlag, 1972 (Lecture Notes in Mathematics, 288). Zbl0237.00013
  13. [Sh] Shafarevitch [ČareviČ] ( J.R.). - Lectures on minimal models and birational transformations of two dimensional schemes. - Bombay, Tata Institute of fundamental Research, 1966 (Tata Institute of fundamental Research; Lectures on Mathematics, 37). Zbl0164.51704MR217068

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.