Deux propriétés combinatoires du langage de Lukasiewicz

D. Gouyou-Beauchamps

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1975)

  • Volume: 9, Issue: R3, page 13-24
  • ISSN: 0988-3754

How to cite

top

Gouyou-Beauchamps, D.. "Deux propriétés combinatoires du langage de Lukasiewicz." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 9.R3 (1975): 13-24. <http://eudml.org/doc/92022>.

@article{Gouyou1975,
author = {Gouyou-Beauchamps, D.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
language = {fre},
number = {R3},
pages = {13-24},
publisher = {EDP-Sciences},
title = {Deux propriétés combinatoires du langage de Lukasiewicz},
url = {http://eudml.org/doc/92022},
volume = {9},
year = {1975},
}

TY - JOUR
AU - Gouyou-Beauchamps, D.
TI - Deux propriétés combinatoires du langage de Lukasiewicz
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1975
PB - EDP-Sciences
VL - 9
IS - R3
SP - 13
EP - 24
LA - fre
UR - http://eudml.org/doc/92022
ER -

References

top
  1. [1] BERGE ( C.), Principes de combinatoire. Dunod, Paris, 1968. Zbl0227.05001
  2. [2] BERGE ( C.), Graphes et hypergraphes. Dunod, Paris, 1970. Zbl0213.25702
  3. [3] BERTRAND, Solution d'un problème. C. R. Acad. Sci. Paris, 105 (1887), 369. 
  4. [4] CATALAN ( E.), Note sur une équation aux différences finies. J. Math. Pures Appl., 3 (1838), 508-516. 
  5. [5] COMTET, Analyse combinatoire. P.U.F. Paris (1970). Zbl0221.05002
  6. [6] CORI ( R.), Some applications of formal langages to enumerations problems. Tagung über Formale Sprachen. Oberwolfach 1970. Mitteilungen der Gesellschaft fur Mathematik und Datenverarbeitung, 8 (1970), 10-12. Zbl0223.02047
  7. [7] CORI ( R.), Un code pour les graphes planaires et ses applications. Thèse de Doctorat d'État, Paris 1973. 
  8. [8] EULER ( L.), Novi Comentarii Academiae Scientarium Imperialis Petropolitanae, 7 (1758-1759), 13-14. 
  9. [9] FOATA ( D.), SCHUTZENBERGER ( M. P.), Théorie géométrique des polynômes eulériens. Lectures Notes in Mathematics n° 138. Springer-Verlag Berlin 1970. Zbl0214.26202
  10. [10] GOODMAN-NARAYANA, Lattice paths with diagonal steps. Publication University Alberta, 39 (1967). Zbl0211.49503
  11. [11] GROSS ( M.), Applications géométriques des langages formels. I. C. C. Bull., 5 (1966), 141-168. 
  12. [12] HALL ( M.), Combinatorial Theory. Blaisdell Publishing Company, Toronto, 1967. Zbl0196.02401
  13. [13] HARARY ( F.), PRINS ( G.), TUTTE ( W.T.), The number of plane trees. Indag Math., 26 (1964), 319-329. Zbl0126.19002
  14. [14] JACKSON ( E.) , ENTRINGER ( R. C.), Enumeration of certain binary matrices. J. Comb. Theory, 8 (1970), 291-298. Zbl0192.33403
  15. [15] KLARNER, Correspondance between plane trees and binary sequences. J. Comb. Theory, 9 (1970), 401-411. Zbl0205.54702
  16. [16] KREWERAS, Dénombrement des chemins minimaux à sauts imposés. C. R. Acad. Sci. Paris, 263 (1966), 1-3. Zbl0304.05016
  17. [17] KUICH ( W.), Enumeration problems and context free languages. Combinatorial Theory and its applications. Balaton-Füred (Erdos, Renyi, T. Sös éd.), North Holland Amsterdam-Londres, 1970, 729-735. Zbl0228.68022
  18. [18] NARAYANA ( T. V.), A partial order and its applications to probability Theory. Sankhya, 21 (1959), 91-98. Zbl0168.39202
  19. [19] NARAYANA ( T. V.), SATHE ( Y. S.) and CHORNEYKO ( I.), Sufficient partition for a class of coin-tossing problems. Biometrische Zeitschrift, 4 (1960), 269-275. Zbl0096.12701
  20. [20] RANEY ( G.), Functional composition patterns and power series reversion. Trans. Amer. Math. Soc., 94 (1960, 441-451. Zbl0131.01402
  21. [21] RODRIGUES ( O.), Sur le nombre de manières d'effectuer un produit de n facteurs. J. Math. Pures et Appl., 3 (1838), 549. 
  22. [22] SCHUTZENBERGER ( M. P.), Le théorème de Lagrange selon Raney. In Séminaires I.R.I.A., Logique et automates, Rocquencourt (1971), 270-275. Zbl0363.05016
  23. [23] SEGNER ( J. A.), Enumeralis modorum, quibus figurae planae rectilinae per diagonales dividantur in triangula. Novi Comentarii Academiae Scientarium Imperialis Petropolitanae, 7 (1758-1759), 203-209. 
  24. [24] WHITTAKER, WATSON ( G. N.), A cours of modem analysis. Cambridge University Press, Cambridge 1940. Zbl0951.30002JFM45.0433.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.