Cônes rationnels commutativement clos

Michel Latteux

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1977)

  • Volume: 11, Issue: 1, page 29-51
  • ISSN: 0988-3754

How to cite

top

Latteux, Michel. "Cônes rationnels commutativement clos." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 11.1 (1977): 29-51. <http://eudml.org/doc/92040>.

@article{Latteux1977,
author = {Latteux, Michel},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
language = {fre},
number = {1},
pages = {29-51},
publisher = {EDP-Sciences},
title = {Cônes rationnels commutativement clos},
url = {http://eudml.org/doc/92040},
volume = {11},
year = {1977},
}

TY - JOUR
AU - Latteux, Michel
TI - Cônes rationnels commutativement clos
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1977
PB - EDP-Sciences
VL - 11
IS - 1
SP - 29
EP - 51
LA - fre
UR - http://eudml.org/doc/92040
ER -

References

top
  1. 1. B. S. BAKER et R. V. BOOK, Reversal-Bounded Multipushdown Machines, J. Comp. Syst. Sc., vol. 8, 1974, p. 315-332. Zbl0309.68043MR375844
  2. 2. J. BERSTEL, Une hiérarchie des parties rationnelles de N2, Math. Systems Theory, vol. 7, 1973, p. 114-137. Zbl0257.68078MR331872
  3. 3. J. BERSTEL et L. BOASSON, Une suite décroissante de cônes rationnels, Institut de Programmation, Paris, n° I. P. 74-75, 1974. Zbl0288.68037MR451876
  4. 4. L. BOASSON, Two Iteration Theorems for Some Families of Languages, J. Comp. Syst. Sc., vol. 7, 1973, p. 583-596. Zbl0298.68053MR386352
  5. 5. L. BOASSON et M. NIVAT, Sur diverses familles de langages fermées par transduction rationnelle, Acta Informatica, vol. 2, 1973, p. 180-188. Zbl0242.68037MR331873
  6. 6. R. V. BOOK et S. A. GREIBACH, Quasi-Realtime Languages, Math. Systems Theory, vol. 4, 1970, p. 97-111. Zbl0188.33102MR276019
  7. 7. R. V. BOOK, M. NIVAT et M. PATERSON, Intersections of Linear Context-Free Languages and Reversal-Bounded Multipushdown Machines, Proceedings of 6th annual A.C.M. Symphosium on theory of Computing, 1974, p. 290-296. Zbl0361.68105
  8. 8. J. L. DURIEUX, Sur l'image, par une transduction rationnelle, des mots sur une lettre, R.A.I.R.O., R-2, 1975, p. 25-37. MR395348
  9. 9. S. EILENBERG, Communication au Congrès international des Mathématiciens, Nice, 1970. 
  10. 10. S. EILENBERG et M. P. SCHUTZENBERGER, Rational Sets in Commutative Monoids, J. Algebra, vol. 13, 1969, p. 173-191. Zbl0206.02703MR246985
  11. 11. M. J. FISCHER et A. L. ROSENBERG, Real-Time Solutions of the Origin-Crossing Problem, Math. Systems theory, vol. 2, 1968, p. 257-263. Zbl0181.01601MR235931
  12. 12. S. GINSBURG, The Mathematical Theory of Context-Free Languages, McGraw-Hill, New York, 1966. Zbl0184.28401MR211815
  13. 13. S. GINSBURG, Algebraic and Automata-Theoretic Properties of Formal Languages, North-Holland Publishing Company, 1975. Zbl0325.68002MR443446
  14. 14. S. GINSBURG et J. GOLDSTINE, Intersection-Closed Full AFL and the Recursively Enumerable Languages, Information and Control, vol. 22, 1973, p. 201-231. Zbl0267.68035MR327087
  15. 15. S. GINSBURG et S. A. GREIBACH, Studies in Abstract Families of Languages, Memoirs of the Amer. Math. Soc., vol. 113, 1966, p. 285-396. 
  16. 16. S. GINSBURG et S. A. GREIBACH, Principal AFL, J. Comp. Syst. Sc., vol. 4, 1970, p. 308-338. Zbl0198.03102MR286599
  17. 17. S. GINSBURG et S. A. GREIBACH, Multitape AFA, J. A.C.M., vol. 19, 1972, p. 193-221. Zbl0241.68031MR300828
  18. 18. S. GINSBURG et E. M. SPANIER, Bounded Algol-like Languages, Trans. Amer. Math. Soc., vol. 113, 1964, p. 333-368. Zbl0142.24803MR181500
  19. 19. S. GINSBURG et E. M. SPANIER, AFL with the Semilinear Property, J. Comp. Syst. Sc., vol. 5, 1971, p. 365-396. Zbl0235.68029MR339558
  20. 20. J. GOLDSTINE, Substitution and Bounded Languages, J. Comp. Syst. Sc., vol. 6, 1972, p. 9-29. Zbl0232.68030MR309367
  21. 21. S. A. GREIBACH, Chains of Full AFL's, Math. Systems theory, vol. 4, 1970, p. 231-242. Zbl0203.30102MR329324
  22. 22. S. A. GREIBACH, Simple Syntactic Operators on Full Semi-AFL's, J. Comp. Syst. Sc., vol. 6, 1972, p. 30-76. Zbl0269.68046MR307535
  23. 23. S. A. GREIBACH, One Counter Language and the IRS Condition, J. Comp. Syst. Sc., vol. 10, 1975, p. 237-247. Zbl0307.68062MR395352
  24. 24. R. ITO, Every Semilinear Set is a Finite Union of Disjoint Linear Sets, J. Comp. Syst. Sc., vol. 3, 1969, p. 221-231. Zbl0187.28503MR242851
  25. 25. M. LATTEUX, Sur les semilinéaires-langages bornés, Publication n° 60 du Laboratoire de Calcul de l'Université de Lille I, 1975. 
  26. 26. L. Y. LIU et P. WEINER, A Characterization of Semilinear Sets, J. Comp. Syst. Sc., vol. 4, 1970, p. 399-307. Zbl0231.68025MR269448
  27. 27. L. Y. LIU et P. WEINER, An Infinite Hierarchy of Intersections of Context-Free Languages, Math. System Theory, vol. 7, 1973, p. 185-192. Zbl0257.68077MR321366
  28. 28. M. NIVAT, Transduction des langages de Chomsky, Ann. Inst. Fourier, Grenoble, vol. 18, 1968, p. 339-455. Zbl0313.68065MR238633
  29. 29. R. J. PARIKH, Language Generating Devices, M.I.T. Res. Lab. Electron. Quart. Prog. Rept., vol. 60, 1961, p. 199-212. 
  30. 30. B. ROVAN, Proving Containment of Bounded AFL, J. Comp. Syst. Sc., vol. 11, 1975, p.1-55. Zbl0338.68053MR383850

Citations in EuDML Documents

top
  1. F. Rodriguez, Note sur la non-principalité de certaines FAL
  2. S. A. Greibach, The strong independence of substitution and homomorphic replication
  3. Matthias Jantzen, On the hierarchy of Petri net languages
  4. S. A. Greibach, C. Wrathall, Single-tape reset machines
  5. Juha Kortelainen, Every commutative quasirational language is regular
  6. Jean-Michel Autebert, Joffroy Beauquier, Luc Boasson, Michel Latteux, Indécidabilité de la condition IRS
  7. Michel Latteux, Mots infinis et langages commutatifs
  8. M. Clerbout, Y. Roos, I. Ryl, Semi-commutations and partial commutations

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.