Every commutative quasirational language is regular

Juha Kortelainen

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1986)

  • Volume: 20, Issue: 3, page 319-337
  • ISSN: 0988-3754

How to cite

top

Kortelainen, Juha. "Every commutative quasirational language is regular." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 20.3 (1986): 319-337. <http://eudml.org/doc/92262>.

@article{Kortelainen1986,
author = {Kortelainen, Juha},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {nonregular language; regular languages; commutative quasirational language},
language = {eng},
number = {3},
pages = {319-337},
publisher = {EDP-Sciences},
title = {Every commutative quasirational language is regular},
url = {http://eudml.org/doc/92262},
volume = {20},
year = {1986},
}

TY - JOUR
AU - Kortelainen, Juha
TI - Every commutative quasirational language is regular
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1986
PB - EDP-Sciences
VL - 20
IS - 3
SP - 319
EP - 337
LA - eng
KW - nonregular language; regular languages; commutative quasirational language
UR - http://eudml.org/doc/92262
ER -

References

top
  1. 1. J.-M. AUTEBERT, J. BEAUQUIER, L. BOASSON and M. LATTEUX, Very Small Families of Algebraic Nonrational Languages, in Formal Language Theory, Perspectives and Open Problems, R.V. BOOK, Ed., Academic Press, New York, 1980, pp. 89-107. 
  2. 2. J. BERSTEL, Une hiérarchie des parties rationnelles de ℕ², Math. Systems Theory, Vol. 7, 1973, pp. 114-137. Zbl0257.68078MR331872
  3. 3. J. BERSTEL, Transductions and Context-Free Languages, B. G. Teubner, Stuttgart, 1979. Zbl0424.68040MR549481
  4. 4. J. BERSTEL and L. BOASSON, Une suite décroissante de cônes rationnels, Lecture Notes Comput. Sc., Vol. 14, 1974, pp. 383-397. Zbl0288.68037MR451876
  5. 5. A. EHRENFEUCHT, D. HAUSSLER and G. ROSENBERG, Conditions enforcing reguiarity of context-free languages, Lecture Notes Comput. Sc.,Vol. 140, 1982, pp. 187-191. Zbl0495.68068MR675456
  6. 6. S. GINSBURG, The Mathematical Theory of Context-Free Languages, McGraw Hill, New York, 1966. Zbl0184.28401MR211815
  7. 7. M. LATTEUX, Cônes rationnels commutativement clos, R.A.I.R.O., Inform. Théor., Vol. 11, 1977, pp. 29-51. Zbl0354.68103MR478782
  8. 8. M. LATTEUX, Langages commutatifs, Thèse Sc. Math., Lille-I, 1978. 
  9. 9. M. LATTEUX, Cônes rationnels commutatifs, J. Comput. System Sc., Vol. 18, 1979, pp. 307-333. Zbl0421.68074MR536405
  10. 10. M. LATTEUX, Langages commutatifs, transductions rationnelles et intersection, Publication de l'Équipe Lilloise d'Informatique Théorique, IT 34.81, 1981. 
  11. 11. M. LATTEUX and J. LEGUY, On the usefulness of bifaithful rational cônes, Publication de l'Equipe Lilloise d'Informatique Théorique, IT 40.82, 1982. Zbl0604.68083

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.