Categorical approach to nonlinear constant continuous-time systems

H. Ehrig; W. Kühnel

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1979)

  • Volume: 13, Issue: 2, page 107-133
  • ISSN: 0988-3754

How to cite

top

Ehrig, H., and Kühnel, W.. "Categorical approach to nonlinear constant continuous-time systems." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 13.2 (1979): 107-133. <http://eudml.org/doc/92093>.

@article{Ehrig1979,
author = {Ehrig, H., Kühnel, W.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {state-transition function; constant; continuous-time system; categorical approaches; reduction; reachability; observability; minimal realization},
language = {eng},
number = {2},
pages = {107-133},
publisher = {EDP-Sciences},
title = {Categorical approach to nonlinear constant continuous-time systems},
url = {http://eudml.org/doc/92093},
volume = {13},
year = {1979},
}

TY - JOUR
AU - Ehrig, H.
AU - Kühnel, W.
TI - Categorical approach to nonlinear constant continuous-time systems
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1979
PB - EDP-Sciences
VL - 13
IS - 2
SP - 107
EP - 133
LA - eng
KW - state-transition function; constant; continuous-time system; categorical approaches; reduction; reachability; observability; minimal realization
UR - http://eudml.org/doc/92093
ER -

References

top
  1. 1. M. A. ARBIB and E. G. MANES, Foundations of System Theory: Decomposable Systems, C.O.I.N.S. Technical Report 73-B3, Univ. of Mass., Amherst, 1973. Zbl0294.93002MR490084
  2. 2. M. A. ARBIB and E. G. MANES, Fuzzy Machines in a Category, C.O.I.N.S. Technical Report 75-B1, Univ. of Mass., Amherst, 1975. Zbl0318.18008MR407106
  3. 3. H. EHRIG, K. D. KIERMEIER, H.-J. KREOWSKI and W. KÜHNEL, Universal Theory of Automata: A Categorical Approach, Teubner-Verlag, Stuttgart, 1974. Zbl0289.94023MR382387
  4. 4. H. EHRIG and H.-J. KREOWSKI, The Skeleton of Minimal Realization, Technical Report 76-04, Technische Universität Berlin, 1976, to appear in Studien zur Algebra und ihre Anwendungen, Akademie-Verlag, Berlin. Zbl0375.93006MR569582
  5. 5. H. EHRIG and W. KÜHNEL, Topological Automata, R.A.I.R.O., Vol. 8, R-3, 1974, pp. 73-91. Zbl0355.94064MR360739
  6. 6. S. J. HEGNER, A Categorical Approach to Continuous-Time Linear Systems, C.O.I.N.S. Technical Report 76-8, Univ. of Mass., Amherst, 1976. 
  7. 7. R. E. KALMAN, P. L. FALB and M. A. ARBIB, Topics in Mathematical System Theory, McGraw-Hill, New York, 1969. Zbl0231.49001MR255260
  8. 8. S. MACLANE, Categories for the Working Mathematician, Springer-Verlag, Berlin-Heidelberg-New York, 1972. Zbl0705.18001MR1712872
  9. 9. M. PFENDER, Universal Algebra in S-monoidal Categories, Ber. Math. Sem. Univ. München, 20 1974. Zbl0326.18003
  10. 10. H. J. SUSSMANN, Minimal Realizations and Canonical Forms for Bilinear Systems, Research Report, Rutgers Univ., 1975. MR429197
  11. 11. H. J. SUSSMANN, Existence and Uniqueness of Minimal Realizations of Nonlinear Systems, Math. Syst. Theory, Vol. 10, 1977, pp. 263-284. Zbl0354.93017MR437158
  12. 12. H. J. SUSSMANN, Semigroup Representation, Bilinear Approximation of Input-Output Maps and Generalized Inputs, Research Report, Rutgers Univ., 1975. MR683616
  13. 13. H. J. SUSSMANN, A Generalization of the Closed Subgroup Theorem to Quotients of Arbitrary Manifolds, J. Diff. Geom., Vol. 10, 1975, pp. 151-166. Zbl0342.58004MR426015
  14. 14. R. VALK, Realisierung allgemeiner Systeme, Berichte der Gesellschaft für Mathematik und Datenverarbeitung, No. 107, Bonn, 1976. Zbl0343.93004MR496886

NotesEmbed ?

top

You must be logged in to post comments.