A new criterion for strong observability
Transfer function models used for early stages of design are large dimension models containing all possible physical inputs, outputs. Such models may be badly conditioned and possibly degenerate. The problem considered here is the selection of maximal cardinality subsets of the physical input, output sets, such as the resulting model is nondegenerate and satisfies additional properties such as controllability and observability and avoids the existence of high order infinite zeros. This problem is...
We propose an efficient numerical algorithm for relative error model reduction based on balanced stochastic truncation. The method uses full-rank factors of the Gramians to be balanced versus each other and exploits the fact that for large-scale systems these Gramians are often of low numerical rank. We use the easy-to-parallelize sign function method as the major computational tool in determining these full-rank factors and demonstrate the numerical performance of the suggested implementation of...
Principal component analysis (PCA) is a powerful fault detection and isolation method. However, the classical PCA, which is based on the estimation of the sample mean and covariance matrix of the data, is very sensitive to outliers in the training data set. Usually robust principal component analysis is applied to remove the effect of outliers on the PCA model. In this paper, a fast two-step algorithm is proposed. First, the objective was to find an accurate estimate of the covariance matrix of...
Interests in Closed-Loop Supply Chain (CLSC) issues are growing day by day within the academia, companies, and customers. Many papers discuss profitability or cost reduction impacts of remanufacturing, but a very important point is almost missing. Indeed, there is no guarantee about the amounts of return products even if we know a lot about demands of first products. This uncertainty is due to reasons such as companies' capabilities in collecting End-of-Life (EOL) products, customers' interests...
The applicability of approximate NARX models of non-linear dynamic systems is discussed. The models are obtained by a new version of Fourier analysis-based neural network also described in the paper. This constitutes a reformulation of a known method in a recursive manner, i.e. adapted to account for incoming data on-line. The method allows us to obtain an approximate model of the non-linear system. The estimation of the influence of the modelling error on the discrepancy between the model and real...
The paper represents the first part of a series of papers on realization theory of switched systems. Part I presents realization theory of linear switched systems, Part II presents realization theory of bilinear switched systems. More precisely, in Part I necessary and sufficient conditions are formulated for a family of input-output maps to be realizable by a linear switched system and a characterization of minimal realizations is presented. The paper treats two types of switched systems. The...
This paper is the second part of a series of papers dealing with realization theory of switched systems. The current Part II addresses realization theory of bilinear switched systems. In Part I [Petreczky, ESAIM: COCV, DOI: 10.1051/cocv/2010014] we presented realization theory of linear switched systems. More precisely, in Part II we present necessary and sufficient conditions for a family of input-output maps to be realizable by a bilinear switched system, together with a characterization of minimal...
This paper is the second part of a series of papers dealing with realization theory of switched systems. The current Part II addresses realization theory of bilinear switched systems. In Part I [Petreczky, ESAIM: COCV, DOI: 10.1051/cocv/2010014] we presented realization theory of linear switched systems. More precisely, in Part II we present necessary and sufficient conditions for a family of input-output maps to be realizable by a bilinear switched system, together with a characterization of minimal...
The paper represents the first part of a series of papers on realization theory of switched systems. Part I presents realization theory of linear switched systems, Part II presents realization theory of bilinear switched systems. More precisely, in Part I necessary and sufficient conditions are formulated for a family of input-output maps to be realizable by a linear switched system and a characterization of minimal realizations is presented. The paper treats two types of switched systems. The...