An algorithm for the word problem in extensions and the dependence of its complexity on the group representation
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1981)
- Volume: 15, Issue: 4, page 355-371
- ISSN: 0988-3754
Access Full Article
topHow to cite
topAvenhaus, J., and Madlener, K.. "An algorithm for the word problem in $HNN$ extensions and the dependence of its complexity on the group representation." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 15.4 (1981): 355-371. <http://eudml.org/doc/92148>.
@article{Avenhaus1981,
author = {Avenhaus, J., Madlener, K.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {Grzegorczyk hierarchy; finitely presented group; HNN extension; word problem; complexity; recursively presented groups},
language = {eng},
number = {4},
pages = {355-371},
publisher = {EDP-Sciences},
title = {An algorithm for the word problem in $HNN$ extensions and the dependence of its complexity on the group representation},
url = {http://eudml.org/doc/92148},
volume = {15},
year = {1981},
}
TY - JOUR
AU - Avenhaus, J.
AU - Madlener, K.
TI - An algorithm for the word problem in $HNN$ extensions and the dependence of its complexity on the group representation
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1981
PB - EDP-Sciences
VL - 15
IS - 4
SP - 355
EP - 371
LA - eng
KW - Grzegorczyk hierarchy; finitely presented group; HNN extension; word problem; complexity; recursively presented groups
UR - http://eudml.org/doc/92148
ER -
References
top- 1. J. AVENHAUS and K. MADLENER, Subrekursive Komplexität bei Gruppen I. Gruppen mit vorgeschriebener Komplexität. Acta Inf., Vol. 9, 1977, pp. 87-104. Zbl0371.02019MR498062
- 2. J. AVENHAUS and K. MADLENER, Algorithmische Probleme bei Einrelatorgruppen und ihre Komplexität, Arch. math. Logik, Vol. 19. 1978, pp. 3-12. Zbl0396.03040MR514453
- 3. W. W. BOONE, Between Logic and Group Theory. Proc. Second Internat. Conf. Theory of Groups, Camberra, 1973. L.N.M. 372, pp. 90-102. Zbl0298.20027MR354880
- 4. F. B. CANNONITO and R. W. GATTERDAM, The Computability of Group constructions I, in Word Problems, W. W. BOONE, F. B. CANNONITO and R. LYNDON, Eds, 1973, pp. 365-400, Amsterdam-London, North Holland. Zbl0274.02017MR446938
- 5. F. B. CANNONITO and R. W. GATTERDAM, The Word Problem and Power Problem in 1 - Relator Groups are Primitive Recursive, Pacific J. Math. Vol. 61. 1975. pp. 351-359. Zbl0335.02029MR401452
- 6. R. C. LYNDON and P. E. SCHUPP, Combinatorial Group Theory, Berlin, Heidelberg, New York, 1977. Zbl0368.20023MR577064
- 7. C. P. SCHNORR, Rekursive Funktionen und ihre Komplexität, Teubner, 1974. Zbl0299.02043MR462927
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.