An algorithm for the word problem in H N N extensions and the dependence of its complexity on the group representation

J. Avenhaus; K. Madlener

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1981)

  • Volume: 15, Issue: 4, page 355-371
  • ISSN: 0988-3754

How to cite

top

Avenhaus, J., and Madlener, K.. "An algorithm for the word problem in $HNN$ extensions and the dependence of its complexity on the group representation." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 15.4 (1981): 355-371. <http://eudml.org/doc/92148>.

@article{Avenhaus1981,
author = {Avenhaus, J., Madlener, K.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {Grzegorczyk hierarchy; finitely presented group; HNN extension; word problem; complexity; recursively presented groups},
language = {eng},
number = {4},
pages = {355-371},
publisher = {EDP-Sciences},
title = {An algorithm for the word problem in $HNN$ extensions and the dependence of its complexity on the group representation},
url = {http://eudml.org/doc/92148},
volume = {15},
year = {1981},
}

TY - JOUR
AU - Avenhaus, J.
AU - Madlener, K.
TI - An algorithm for the word problem in $HNN$ extensions and the dependence of its complexity on the group representation
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1981
PB - EDP-Sciences
VL - 15
IS - 4
SP - 355
EP - 371
LA - eng
KW - Grzegorczyk hierarchy; finitely presented group; HNN extension; word problem; complexity; recursively presented groups
UR - http://eudml.org/doc/92148
ER -

References

top
  1. 1. J. AVENHAUS and K. MADLENER, Subrekursive Komplexität bei Gruppen I. Gruppen mit vorgeschriebener Komplexität. Acta Inf., Vol. 9, 1977, pp. 87-104. Zbl0371.02019MR498062
  2. 2. J. AVENHAUS and K. MADLENER, Algorithmische Probleme bei Einrelatorgruppen und ihre Komplexität, Arch. math. Logik, Vol. 19. 1978, pp. 3-12. Zbl0396.03040MR514453
  3. 3. W. W. BOONE, Between Logic and Group Theory. Proc. Second Internat. Conf. Theory of Groups, Camberra, 1973. L.N.M. 372, pp. 90-102. Zbl0298.20027MR354880
  4. 4. F. B. CANNONITO and R. W. GATTERDAM, The Computability of Group constructions I, in Word Problems, W. W. BOONE, F. B. CANNONITO and R. LYNDON, Eds, 1973, pp. 365-400, Amsterdam-London, North Holland. Zbl0274.02017MR446938
  5. 5. F. B. CANNONITO and R. W. GATTERDAM, The Word Problem and Power Problem in 1 - Relator Groups are Primitive Recursive, Pacific J. Math. Vol. 61. 1975. pp. 351-359. Zbl0335.02029MR401452
  6. 6. R. C. LYNDON and P. E. SCHUPP, Combinatorial Group Theory, Berlin, Heidelberg, New York, 1977. Zbl0368.20023MR577064
  7. 7. C. P. SCHNORR, Rekursive Funktionen und ihre Komplexität, Teubner, 1974. Zbl0299.02043MR462927

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.