A probabilistic analysis of a new satisfiability algorithm

B. Apolloni; S. Di Gregorio

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1982)

  • Volume: 16, Issue: 3, page 201-223
  • ISSN: 0988-3754

How to cite

top

Apolloni, B., and Di Gregorio, S.. "A probabilistic analysis of a new satisfiability algorithm." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 16.3 (1982): 201-223. <http://eudml.org/doc/92162>.

@article{Apolloni1982,
author = {Apolloni, B., Di Gregorio, S.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {average polynomial time cost; full randomness in the logical variables; average running time; Galil tree method; conjunctive normal forms; complexity of NP-complete problems},
language = {eng},
number = {3},
pages = {201-223},
publisher = {EDP-Sciences},
title = {A probabilistic analysis of a new satisfiability algorithm},
url = {http://eudml.org/doc/92162},
volume = {16},
year = {1982},
}

TY - JOUR
AU - Apolloni, B.
AU - Di Gregorio, S.
TI - A probabilistic analysis of a new satisfiability algorithm
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1982
PB - EDP-Sciences
VL - 16
IS - 3
SP - 201
EP - 223
LA - eng
KW - average polynomial time cost; full randomness in the logical variables; average running time; Galil tree method; conjunctive normal forms; complexity of NP-complete problems
UR - http://eudml.org/doc/92162
ER -

References

top
  1. 1. K. J. ASTROM, Introduction to Stochastic Control Theory, NewYork, London, Academic Press, 1970. Zbl0226.93027MR270799
  2. 2. D. E. BARTON and F. N. DAVID, Combinatorial Chance, London, Griffin, 1972. 
  3. 3. A. T. BHARUKA-REID, Elements of the Theory of Markov Processes and their Applications, London, McGraw-Hill, 1960. Zbl0095.32803MR112177
  4. 4. S. A. COOK, The Complexity of Theorem-Proving Procedures, Proc. third A.C.M. Symposium on Theory of Computing, 1971, pp. 151-158. Zbl0253.68020
  5. 5. H. KRAMER, Mathematical Methods of Statistics, Princeton, Princeton University Press, 1945. Zbl0063.01014
  6. 6. Z. GALIL, On Enumeration Procedures for Theorem Proving and for Integer Programming, Automata Languages and Programming Third International Colloquim, S. MICHAELSON and R. MILNER, Eds., Edinburg University Press, 1976, pp. 355-381. Zbl0358.68132
  7. 7. M. R. GAREY and D. S. JOHNSON, Computers and Intractability, San Francisco, W. H. Freeman and C., 1979. Zbl0411.68039MR519066
  8. 8. R. M. KARP, Reducibility among Combinatorial Problems, in Complexity of Conputer Computations, R. E. MILLER and J. W. THATCHER, Eds., New York, Plenum Press, 1972, pp. 85-104. Zbl0366.68041MR378476
  9. 9. R. M. KARP, On the Computational Complexity of Combinatorial Problems, Networks, Vol. 5, 1974, pp. 45-68. Zbl0324.05003
  10. 10. R. M. KARP, The Probabilistic Analysis of some Combinatorial Search Algorithm, Memorandum No. ERL-M581, University of California, Berkeley, 1976. Zbl0368.68035MR445898
  11. 11. V. F. KOLCHIN, B. A. SEVASTIYANOV and V. P. CHISTIANOV, Random Allocations, NewYork, John Wiley, 1978. Zbl0376.60003
  12. 12. H. L. LEWIS, Satisfiability Problems for Propositional Calculi, Math. System Theory, Vol. 13, 1979, pp. 45-53. Zbl0428.03035MR548548
  13. 13. R. OTTER, The Multiplicative Process, Ann. Math. Statist., Vol. 20, 1949, pp. 206-224. Zbl0033.38301MR30716
  14. 14. T. J. SHAEFFER, The Complexity of Statisfiability Problems, X Sym. on Theory of Computing, 1978, pp. 216-226. 
  15. 15. D. L. SNYDERRandom Point Processes, New York, John Wiley, 1975. Zbl0385.60052MR501325

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.