Independent instances for some undecidable problems

Cristian Calude; Gheorghe Păun

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1983)

  • Volume: 17, Issue: 1, page 49-54
  • ISSN: 0988-3754

How to cite

top

Calude, Cristian, and Păun, Gheorghe. "Independent instances for some undecidable problems." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 17.1 (1983): 49-54. <http://eudml.org/doc/92177>.

@article{Calude1983,
author = {Calude, Cristian, Păun, Gheorghe},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {consistent extension; recursive arithmetic; Goedel numbering; undecidable problems},
language = {eng},
number = {1},
pages = {49-54},
publisher = {EDP-Sciences},
title = {Independent instances for some undecidable problems},
url = {http://eudml.org/doc/92177},
volume = {17},
year = {1983},
}

TY - JOUR
AU - Calude, Cristian
AU - Păun, Gheorghe
TI - Independent instances for some undecidable problems
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1983
PB - EDP-Sciences
VL - 17
IS - 1
SP - 49
EP - 54
LA - eng
KW - consistent extension; recursive arithmetic; Goedel numbering; undecidable problems
UR - http://eudml.org/doc/92177
ER -

References

top
  1. 1. M. DAVIS, YU. MATIJASEVIČ and J. ROBINSON, Hilbert's Tenth Problem. Diophantine Equations : Positive Aspects of a Negative Solution, Proc. Symposia Pure Math., vol. 28, 1976, p. 223-378. Zbl0346.02026MR432534
  2. 2. S. GREIBACH and J. HOPCROFT, Scattered Context Grammars, J. Comput. Systems Sci., vol. 3, 1969, p. 233-247. Zbl0174.02801MR246727
  3. 3. J. HARTMANIS and J. HOPCROFT, Independence Results in Computer Science, ACM SIGACT News, vol. 8, 1976, p. 13-24. 
  4. 4. Yu. MATIJASEVIC, Enumerable Sets Are Diophantine. Dokl. Akad. Nauk SSSR, vol. 191, 1970, p. 279-282. Zbl0212.33401MR258744
  5. 5. H. A. MAURER, Simple Matrix Languages with a Leftmost Restriction, Inform. Control, vol., 23, 1973, p. 128-139. Zbl0261.68037MR388868
  6. 6. J. PARIS and L. HARRINGTON, A Mathematical Incompleteness in Peano Arithmetic, in J. Barwise (ed.), Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977, p. 1133-1142. MR457132
  7. 7. E. POST, A Variant of a Recursively Unsolvable Problem, Bull. AMS, vol. 52, 1946, p. 264-268. Zbl0063.06329MR15343
  8. 8. H. Jr. ROGERS, Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York, 1967. Zbl0183.01401MR224462
  9. 9. D. ROSENKRANTZ, Programmed Grammars and Classes of Formal Languages, J. of ACM, vol. 16, 1969, p. 107-131. Zbl0182.02004MR235940
  10. 10. A. SALOMAA, Formal Languages, Academic Press, New York, London, 1973. Zbl0262.68025MR438755

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.