A note on proofs of falsehood.
Page 1 Next
Jan Krajicek (1987)
Archiv für mathematische Logik und Grundlagenforschung
Vítězslav Švejdar (1981)
Commentationes Mathematicae Universitatis Carolinae
Marcel Crabbé (1978)
Fundamenta Mathematicae
Ferreira, Gilda, Oitavem, Isabel (2006)
Portugaliae Mathematica. Nova Série
Gerhard Jäger (1980)
Archiv für mathematische Logik und Grundlagenforschung
Stanisław Świerczkowski (1995)
Fundamenta Mathematicae
A. Stern (1993)
Fundamenta Mathematicae
The Rowland Institute for Science, 100 Cambridge Parkway, Cambridge, Massachusetts 02142, U.S.A. A construction is presented for generating sentences that satisfy a recursively enumerable set of interpretability properties. This construction is then used to prove three previously announced results concerning the lattice of local interpretability types of theories (also known as the Lattice of Chapters).
Vítězslav Švejdar (1978)
Commentationes Mathematicae Universitatis Carolinae
Cristian Calude, Gheorghe Păun (1983)
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
Martin Stein (1978)
Archiv für mathematische Logik und Grundlagenforschung
V. Shavrukov (1997)
Fundamenta Mathematicae
For finitely axiomatized sequential theories F and reflexive theories R, we give a characterization of the relation ’F interprets R’ in terms of provability of restricted consistency statements on cuts. This characterization is used in a proof that the set of (as well as ) sentences π such that GB interprets ZF+π is -complete.
Kosta Došen (1990)
Publications de l'Institut Mathématique
Jiří Bečvář (1971)
Pokroky matematiky, fyziky a astronomie
Petr Hájek (1981)
Commentationes Mathematicae Universitatis Carolinae
Petr Hájek (1987)
Commentationes Mathematicae Universitatis Carolinae
Antonín Sochor, Petr Vopěnka (1983)
Commentationes Mathematicae Universitatis Carolinae
W. Marek (1978)
Fundamenta Mathematicae
M. Artigue, E. Isambert, M. Perrin, A. Zalc (1978)
Fundamenta Mathematicae
Wolfgang Friedrich (1984)
Archiv für mathematische Logik und Grundlagenforschung
Ennio De Giorgi, Marco Forti, Vincenzo M. Tortorelli (1986)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
We formulate, within the frame-theory for the foundations of Mathematics outlined in [2], a list of axioms which state that almost all "interesting" collections and almost all "interesting" operations are elements of the universe. The resulting theory would thus have the important foundational feature of being completely self-contained. Unfortunately, the whole list is inconsistent, and we are led to formulate the following problem, which we call the problem of self-reference: "Find out...
Page 1 Next