A note on proofs of falsehood.
The Rowland Institute for Science, 100 Cambridge Parkway, Cambridge, Massachusetts 02142, U.S.A. A construction is presented for generating sentences that satisfy a recursively enumerable set of interpretability properties. This construction is then used to prove three previously announced results concerning the lattice of local interpretability types of theories (also known as the Lattice of Chapters).
For finitely axiomatized sequential theories F and reflexive theories R, we give a characterization of the relation ’F interprets R’ in terms of provability of restricted consistency statements on cuts. This characterization is used in a proof that the set of (as well as ) sentences π such that GB interprets ZF+π is -complete.
We formulate, within the frame-theory for the foundations of Mathematics outlined in [2], a list of axioms which state that almost all "interesting" collections and almost all "interesting" operations are elements of the universe. The resulting theory would thus have the important foundational feature of being completely self-contained. Unfortunately, the whole list is inconsistent, and we are led to formulate the following problem, which we call the problem of self-reference: "Find out...