How much semigroup structure is needed to encode graphs ?

P. Goralčík; A. Goralčíková; V. Koubek

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1986)

  • Volume: 20, Issue: 2, page 191-206
  • ISSN: 0988-3754

How to cite

top

Goralčík, P., Goralčíková, A., and Koubek, V.. "How much semigroup structure is needed to encode graphs ?." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 20.2 (1986): 191-206. <http://eudml.org/doc/92256>.

@article{Goralčík1986,
author = {Goralčík, P., Goralčíková, A., Koubek, V.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {isomorphism complete; polynomial time isomorphism algorithm; critical varieties of finite semigroups},
language = {eng},
number = {2},
pages = {191-206},
publisher = {EDP-Sciences},
title = {How much semigroup structure is needed to encode graphs ?},
url = {http://eudml.org/doc/92256},
volume = {20},
year = {1986},
}

TY - JOUR
AU - Goralčík, P.
AU - Goralčíková, A.
AU - Koubek, V.
TI - How much semigroup structure is needed to encode graphs ?
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1986
PB - EDP-Sciences
VL - 20
IS - 2
SP - 191
EP - 206
LA - eng
KW - isomorphism complete; polynomial time isomorphism algorithm; critical varieties of finite semigroups
UR - http://eudml.org/doc/92256
ER -

References

top
  1. 1. L. BABAI, Moderately exponential bound for graph isomorphism, FCT'81, Lecture Notes in Comp. Sci, n. 117, Springer, 1981, pp. 34-50. Zbl0462.68040MR652968
  2. 2. K. S. BOOTH, Isomorphism testing for graphs, semigroups, and finite automata are polynomially equivalent problems, SIAM J. Comput. Vol. 7, 1976, pp. 273-279. Zbl0381.68042MR483689
  3. 3. K. S. BOOTH and Ch. J. COLBOURN, Problems polynomially equivalent to graph isomorphism, Tech. Rep. CS-77-04, Univ. of Waterloo, 1979. 
  4. 4. A. H. CLIFFORD and G. B. PRESTON, The algebraic theory of semigroups, A.M.S., Providence, Rhode Island, 1967. Zbl0178.01203
  5. 5. S. EILENBERG, Automata, Languages, and Machines, Vol. B, Academic Press, 1976. Zbl0359.94067MR530383
  6. 6. L. KUČERA and V. TRNKOVÁ, Isomorphism completeness for some algebraic structures, FCT'81, Lecture Notes in Comp. Sci, n. 117, Springer, 1981, pp. 218-225. Zbl0476.68035MR652988
  7. 7. L. KUČERA and V. TRNKOVÁ, Isomorphism testing in unary algebras [to appear in SIAM J. Comput]. Zbl0665.68029MR953287
  8. 8. S. MICALI and V. V. VAZIRANI, An O(√|v|.|E|) algorithm for finding maximum matching in generai graphs, Proc. FOCS'80, pp. 17-27. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.