Étude et implémentation d'un système de déduction pour logique algorithmique

Françoise Garcia

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1988)

  • Volume: 22, Issue: 1, page 57-92
  • ISSN: 0988-3754

How to cite

top

Garcia, Françoise. "Étude et implémentation d'un système de déduction pour logique algorithmique." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 22.1 (1988): 57-92. <http://eudml.org/doc/92301>.

@article{Garcia1988,
author = {Garcia, Françoise},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {automatic reasoning; logic for abstract programms; algorithmic logic},
language = {fre},
number = {1},
pages = {57-92},
publisher = {EDP-Sciences},
title = {Étude et implémentation d'un système de déduction pour logique algorithmique},
url = {http://eudml.org/doc/92301},
volume = {22},
year = {1988},
}

TY - JOUR
AU - Garcia, Françoise
TI - Étude et implémentation d'un système de déduction pour logique algorithmique
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1988
PB - EDP-Sciences
VL - 22
IS - 1
SP - 57
EP - 92
LA - fre
KW - automatic reasoning; logic for abstract programms; algorithmic logic
UR - http://eudml.org/doc/92301
ER -

References

top
  1. 1. J. W. DE BAKKER, Recursive Programs as Predicates Transformers, in Formal Descriptions of Programming Concepts, E. J. NEUHOLD éd., North Holland, 1978. Zbl0392.68006MR537905
  2. 2. J. W. DE BAKKER, Semantics and Termination of Non Deterministic Recursive Programs, in Automata, Languages and Programming, Edimburgh, 1976. Zbl0354.68021
  3. 3. B. S. CHLEBUS, Completness Proofs for Some Logics of Programs, Z. Math Logik und Grundlagen Math., vol. 28, 1982, p. 49-62. Zbl0491.03008MR649907
  4. 4. G. COUSINEAU, Les arbres à feuilles indicées : un cadre algébrique de définition des structures de contrôle, Thèse d'état, Paris, 1977. 
  5. 5. G. COUSINEAU, An Algebraic Definition of Control Structures, Theoretical computer science, vol. 12, 1980. Zbl0456.68015MR585111
  6. 6. G. COUSINEAU, A Programmation en EXEL, Revue technique THOMSON-CSF, vol. 10, n° 2, 1978, et Vol 11, n° 1, 1979. 
  7. 7. G. COUSINEAU, The Algebraic Structure of Flowcharts, 8th MFCS Symposium 1979, Lecture Notes in Computer Science, n° 74, Springer Verlag. 
  8. 8. E. ENGELER, Algorithmic Properties of Structures, Math. System Theory, 1, 1967. Zbl0202.00802MR224473
  9. 9. P. ENJALBERT, Contribution à la logique algorithmique. Systèmes de déduction pour arbres et schémas de programmes, Thèse d'état, Paris, 1981. Zbl0464.68019
  10. 10. P. ENJABERT, Systèmes de déduction pour les arbres et les schémas de programmes, RAIRO Informatique théorique, vol. 14, n° 3 et vol. 14, n° 4, 1980. Zbl0441.68007
  11. 11. P. ENJALBERT, Preuves de programmes, Revue technique THOMSON-CSF, vol.12, n° 3, 1980. 
  12. 12. D. HAREL, First Order Dynamic Logic, Lecture Notes in Computer Science, n°68, 1979, Springer Verlag. Zbl0403.03024MR567695
  13. 13. M. GORDON, R. MILNER et C. WADSWORTH, Edimburgh LCF, Lecture Notes in Computer Science, n° 78, Springer Verlag. Zbl0421.68039MR2049352
  14. 14. R. MILNER, Logic for Computable Functions Description of a Machine Implementation, Stanford Artificial Intelligence Project, Memo AIM-169, Computer Science Department Report CS 288, mai 1972. 
  15. 15. R. MILNER, LCF : A Way of Doing Proofs with a Machine. Department of Computer Science, Univ. of Edimburgh. Zbl0423.68049
  16. 16. R. MILNER, A Methodology for Performing Rigorous Proofs About Programs, Proc lst I.B.M. Symposium on Mathematical Foundations of Computer Science, 1976. 
  17. 17. R. MILNER, A Theory ofType Polymorphism in Programming, Journal of computer and system science, n° 17, 1978. Zbl0388.68003MR516844
  18. 18. R. MILNER, HOW ML evolved, in Polymorphism, vol. 1, n° 1, janvier 1983, Bell Cabs., L. CARDELLI et D. MCQUEEN éd. 
  19. 19. G. MIRKOWSKA, Propositionnal Algorithmic Theory of Arithmetic, Communication manuscrite. 
  20. 20. G. MIRKOWSKA, Propositionnal Algorithmic Logic, Lecture Notes in Computer Science, n° 74, 1979, Springer Verlag. 
  21. 21. G. MIRKOWSKA, Algorithmic Logic and its Application in the Theory of Programs, Fundamentale Informaticae, vol. I, n° 1 et vol. 1, n° 2, 1977. Zbl0358.68036MR660300
  22. 22. L. NOLIN et G. RUGGIU, A Formalization of EXEL, Assoc. Comput. Mathematics SIGACT-SIGPLAN, Symposium on the Principles of Programming Languages, Boston, 1973. Zbl0308.68011
  23. 23. H. RASIOWA, Algorithmic Logic, I.C.S. P.A.S. Reports n° 281, Institute of Computer Science, Academic des Sciences, Varsovie, 1977. 
  24. 24. A. SALWICKI, Formalized Algorithmic Languages, Bull. Acad. Pol. Sci. Ser. Math. Astr. Phys., vol. 18, 1970, p. 227-232. Zbl0198.02801MR270852
  25. 25. A. SALWICKI, On Algorithmic Theory of Stacks, Fundamentae Informaticae, vol. III, n° 1, 1980. Zbl0441.68013MR596731
  26. 26. A. SALWICKI, On Algorithmic Logic and its Applications, Internal Report, Pol. Ac. of Sci., 1978. Zbl0387.68027
  27. 27. A. SALWICKI, An Algorithmic Approach to Set Theory, Proc. F.C.T. 1977, Lecture Notes in Computer Science, n° 56, 1977, Springer Verlag. Zbl0403.68005MR483659
  28. 28. F. GARCIA, Étude et implémentation en ML/LCF d'un système de déduction pour logique algorithmique, Thèse Docteur-Ingénieur, juin 1985, Université Paris-VII. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.