Commutativity in groups presented by finite Church-Rosser Thue systems

Klaus Madlener; Friedrich Otto

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1988)

  • Volume: 22, Issue: 1, page 93-111
  • ISSN: 0988-3754

How to cite

top

Madlener, Klaus, and Otto, Friedrich. "Commutativity in groups presented by finite Church-Rosser Thue systems." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 22.1 (1988): 93-111. <http://eudml.org/doc/92302>.

@article{Madlener1988,
author = {Madlener, Klaus, Otto, Friedrich},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {finite Church-Rosser Thue system; monoid; word; infinite order; centralizer; finitely generated abelian subgroup},
language = {eng},
number = {1},
pages = {93-111},
publisher = {EDP-Sciences},
title = {Commutativity in groups presented by finite Church-Rosser Thue systems},
url = {http://eudml.org/doc/92302},
volume = {22},
year = {1988},
}

TY - JOUR
AU - Madlener, Klaus
AU - Otto, Friedrich
TI - Commutativity in groups presented by finite Church-Rosser Thue systems
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1988
PB - EDP-Sciences
VL - 22
IS - 1
SP - 93
EP - 111
LA - eng
KW - finite Church-Rosser Thue system; monoid; word; infinite order; centralizer; finitely generated abelian subgroup
UR - http://eudml.org/doc/92302
ER -

References

top
  1. 1. S. I. ADJAN, The Burnside Problem and Identities in Groups; Springer, Berlin-Heidelberg-New York, 1979. Zbl0417.20001MR537580
  2. 2. J. AVENHAUS, R. V. BOOK and C. SQUIER, On Expressing Commutativity by Finite Church-Rosser Presentations: a Note on Commutative Monoids, R.A.I.R.O. Inf. théorique, Vol. 18, 1984, pp. 47-52. Zbl0542.20038MR750450
  3. 3. J. AVENHAUS, K. MADLENER and F. OTTO, Groups presented by Finite Two-Monadic Church-Rosser Thue Systems, Trans. Amer. Math. Soc., Vol. 297, 1986, pp. 427-443. Zbl0604.20034MR854076
  4. 4. J. BERSTEL, Congruences plus que parfaites et langages algébriques, Séminaire d'Informatique Théorique, Institut de Programmation, 1976-1977, pp. 123-147. 
  5. 5. R. V BOOK, Confluent and Other Types of Thue Systems, J. Assoc. Comput. Mach., Vol. 29, 1982, pp. 171-182. Zbl0478.68032MR662617
  6. 6. R. V BOOK, Decidable Sentences of Church-Rosser Congruences, Theoret. Comput. Sci., Vol. 24, 1983, pp. 301-312. Zbl0525.68015MR716826
  7. 7. R. V BOOK, Thue Systems and the Church-Rosser Property: Replacement Systems, Specification of Formal Languages and Presentations of Monoids, in L. CUMMINGS Ed.; Combinatorics on Words: Progress and Perspectives, Academic Press, 1983, pp. 1-38. Zbl0563.68062MR910127
  8. 8. R. V BOOK, Thue Systems as Rewriting Systems, in J. P. JOUANNAUD Ed., Rewriting Techniques and Applications, Lect. Notes in Comput. Sci., Vol. 202, 1985, pp. 63-94. Zbl0587.03026MR826056
  9. 9. R. V. BOOK, M. JANTZEN and C. WRATHALL, Monadic Thue Systems, Theoret. Comput. Sci., Vol. 19, 1982, pp. 231-251. Zbl0488.03020MR671869
  10. 10. Y. COCHET, Church-Rosser Congruences on Free Semigroups, Coll. Math. Soc. Janos Bolyai, Algebraic Theory of Semigroups, Vol. 20, 1976, pp. 51-60. Zbl0408.20054MR541109
  11. 11. Y. COCHET and M. NIVAT, Une generalization des ensembles de Dyck, Israel J. Math., Vol. 9, 1971, pp. 389-395. Zbl0215.56005MR276021
  12. 12. V. DIEKERT, Some Remarks on Presentations by Finite Church-Rosser Thue Systems, private communication. Zbl0636.20023
  13. 13. R. H. GILMAN, Computations with Rational Subsets of Confluent Groups, Proceedings of EUROSAM 84, Lect. Notes in Comput. Sci., Vol. 174, 1984, pp. 207-212. Zbl0549.68025MR779127
  14. 14. M. GREENDLINGER, Problem of Conjugacy and Coincidence with the Anticenter in Group Theory, Siberian Math. J., Vol. 7, 1966, pp. 626-640. MR199257
  15. 15. R. H HARING-SMITH, Groups and Simple Languages, Trans. Amer. Math. Soc., Vol. 279, 1983, pp. 337-356. Zbl0518.20030MR704619
  16. 16. M. JANTZEN, Thue Systems and the Church-Rosser Property, Proceedings of MFCS 84, Lect. Notes Comput. Sci., Vol. 176, 1984, pp. 80-95. Zbl0553.03025MR783439
  17. 17. M. JANTZEN, Thue Congruences and Complete String-Rewriting Systems, Habilitationsschrift, Univ. Hamburg, 1986. Zbl1022.68565
  18. 18. D. E. MULLER and P. E. SCHUPP, Groups, the Theory of Ends, and Context-Free Languages, J. Comp. System Sci., Vol. 26, 1983, pp. 295-310. Zbl0537.20011MR710250
  19. 19. P. NARENDRAN and C. O'DUNLAING, Cancellativity in Finitely Presented Semigroups, submitted for publication. Zbl0682.20046
  20. 20. F. OTTO, Conjugacy in Monoids with a Special Church-Rosser Presentation is Decidable, Semigroup Forum, Vol. 29, 1984, pp. 223-240. Zbl0551.20044MR742135
  21. 21. F. OTTO, Finite Complete Rewriting Systems for the Jantzen Monoid and the Greendlinger Group, Theoret. Comput. Sci., Vol. 32, 1984, pp. 249-260. Zbl0555.20036MR761345
  22. 22. F. OTTO, Sorne Undecidability Results for Non-Monadic Church-Rosser Thue Systems, Theoret. Comput. Sci., Vol. 33, 1984, pp. 261-278. Zbl0563.03019MR767394
  23. 23. F. OTTO, Elements of Finite Order for Finite Monadic Church-Rosser Thue Systems, Trans. Amer. Math. Soc., Vol. 291, 1985, pp. 629-637. Zbl0583.20054MR800255
  24. 24. F. OTTO, On Deciding Whether a Monoid is a Free Monoid or Is a Group, Acta Inf., Vol. 23, 1986, pp. 99-110. Zbl0592.20059MR845625

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.